Data-Intensive Information Processing Applications — Session #5

Graph Algorithms

Jordan Boyd-Graber
University of Maryland

2N YW/ ~
—

)
IRyLN

Thursday, March 3, 2011

‘@ @@@l This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Old Business
HW1 Graded

Combiners throw away data!

HW2 Due
Last week slides updated
Dense Representations

Dumbo

-

W

- S e
R PSS L >
S o= .-('-. " l).‘“’f."!‘xtyq

PN A

\ i

"\-‘..Q_‘L‘ “.“J

-

>
PR Sty
Areee s

LT~ A &1

Pl

Source: Wikipedia (Japanese rock garden)

Today’s Agenda

Graph problems and representations
Parallel breadth-first search

PageRank

What’s a graph?
G = (V,E), where

V represents the set of vertices (nodes)
E represents the set of edges (links)
Both vertices and edges may contain additional information

Different types of graphs:

Directed vs. undirected edges
Presence or absence of cycles

Graphs are everywhere:

Hyperlink structure of the Web

Physical structure of computers on the Internet
Interstate highway system

Social networks

AONINGEBERGA

P A L e
R Y L

N .'?}Nr"_*"..‘. ?7-“ '

»
P
e

Source: Wikipedia (Kénigsberg)

Some Graph Problems

Finding shortest paths
Routing Internet traffic and UPS trucks
Finding minimum spanning trees
Telco laying down fiber
Finding Max Flow
Airline scheduling
|dentify “special” nodes and communities
Breaking up terrorist cells, spread of avian flu
Bipartite matching

Monster.com, Match.com

And of course... PageRank

Max Flow / Min Cut

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

Graphs and MapReduce

Graph algorithms typically involve:

Performing computations at each node: based on node features,
edge features, and local link structure

Propagating computations: “traversing” the graph

Key questions:

How do you represent graph data in MapReduce?
How do you traverse a graph in MapReduce?

Representing Graphs
G=(V,E)

Two common representations

Adjacency matrix
Adjacency list

Adjacency Matrices

Represent a graph as an n x n square matrix M

n=|V|
M; = 1 means a link from node j to j

O OO~
- O~ O W
OO == I

A OWOIN =

Adjacency Matrices: Critique

Advantages:

Amenable to mathematical manipulation

lteration over rows and columns corresponds to computations on
outlinks and inlinks

Disadvantages:

Lots of zeros for sparse matrices
Lots of wasted space

Adjacency Lists

Take adjacency matrices... and throw away all the zeros

112|3 |4
1/0(1]0 |1 1: 2, 4
21110111 2:1,3,4
3:
3 000
4:1, 3
4 0/ 1|0

Adjacency Lists: Critique

Advantages:

Much more compact representation
Easy to compute over outlinks

Disadvantages:

Much more difficult to compute over inlinks

Single Source Shortest Path

Problem: find shortest path from a source node to one or
more target nodes

Shortest might also mean lowest weight or cost

First, a refresher: Dijkstra’s Algorithm

Dijkstra’s Algorithm Example

Example from CLR

Dijkstra’s Algorithm Example

Example from CLR

Dijkstra’s Algorithm Example

Example from CLR

Dijkstra’s Algorithm Example

Example from CLR

Dijkstra’s Algorithm Example

Example from CLR

Dijkstra’s Algorithm Example

Example from CLR

Single Source Shortest Path

Problem: find shortest path from a source node to one or
more target nodes

Shortest might also mean lowest weight or cost

Single processor machine: Dijkstra’s Algorithm
MapReduce: parallel Breadth-First Search (BFS)

Finding the Shortest Path

Consider simple case of equal edge weights
Solution to the problem can be defined inductively

Here’s the intuition:

Define: b is reachable from a if b is on adjacency list of a
DISTANCETO(S) = 0

For all nodes p reachable from s,
DISTANCETO(p) = 1

For all nodes n reachable from some other set of nodes M,
DISTANCETO(n) = 1 + min(DISTANCETO(m), m € M)

d1 m1

Source: Wikipedia (Wave)

Visualizing Parallel BFS

From Intuition to Algorithm

Data representation:

Key: node n

Value: d (distance from start), adjacency list (list of nodes
reachable from n)

Initialization: for all nodes except for start node, d = «
Mapper:

Vm € adjacency list: emit (m, d + 1)
Sort/Shuffle

Groups distances by reachable nodes
Reducer:

Selects minimum distance path for each reachable node
Additional bookkeeping needed to keep track of actual path

Multiple Iterations Needed

Each MapReduce iteration advances the “known frontier”
by one hop

Subsequent iterations include more and more reachable nodes as
frontier expands

Multiple iterations are needed to explore entire graph

Preserving graph structure:

Problem: Where did the adjacency list go?
Solution: mapper emits (n, adjacency list) as well

BFS Pseudo-Code

:

|

class Maps

class REDus

v
method Map

L1l
'II] .lll !,-an]-E

K

N

|

method Repvcrin

17

'ul' l”

‘u
If IsNop

el i

|
'

S

|
L

then

thon

Stopping Criterion

How many iterations are needed in parallel BFS (equal
edge weight case)?

Convince yourself: when a node is first “discovered”, we've
found the shortest path

Now answer the question...

Six degrees of separation?

Practicalities of implementation in MapReduce

Comparison to Dijkstra

Dijkstra’s algorithm is more efficient

At any step it only pursues edges from the minimum-cost path
inside the frontier

MapReduce explores all paths in parallel

Lots of “waste”
Useful work is only done at the “frontier”

Why can’t we do better using MapReduce?

Weighted Edges

Now add positive weights to the edges

Why can’t edge weights be negative?

Simple change: adjacency list now includes a weight w for
each edge

In mapper, emit (m, d + w,) instead of (m, d + 1) for each node m

That’s it?

Stopping Criterion
How many iterations are needed in parallel BFS (positive
edge weight case)?

Convince yourself: when a node is first “discovered”, we've
\
found the shortest path ‘““e‘

Additional Complexities

Stopping Criterion

How many iterations are needed in parallel BFS (positive
edge weight case)?

Practicalities of implementation in MapReduce

Graphs and MapReduce

Graph algorithms typically involve:
Performing computations at each node: based on node features,
edge features, and local link structure
Propagating computations: “traversing” the graph

Generic recipe:

Represent graphs as adjacency lists

Perform local computations in mapper

Pass along partial results via outlinks, keyed by destination node
Perform aggregation in reducer on inlinks to a node

lterate until convergence: controlled by external “driver”

Don’t forget to pass the graph structure between iterations

Connection to Theory

Bulk Synchronous Processing (1990 Valiant)
Nodes (Processors) can communicate with any neighbor

However, messages do not arrive until synchronization
phase

Random Walks Over the Web

Random surfer model:

User starts at a random Web page
User randomly clicks on links, surfing from page to page

PageRank

Characterizes the amount of time spent on any given page
Mathematically, a probability distribution over pages

PageRank captures notions of page importance

Correspondence to human intuition?
One of thousands of features used in web search
Note: query-independent

PageRank: Defined

Given page x with inlinks t,...t,, where

C(t) is the out-degree of t
o is probability of random jump
N is the total number of nodes in the graph

PR(x) = a()+(1-)2?(?))

\

e
/

Computing PageRank

Properties of PageRank

Can be computed iteratively
Effects at each iteration are local

Sketch of algorithm:

Start with seed PR, values
Each page distributes PR, “credit” to all pages it links to

Each target page adds up “credit” from multiple in-bound links to
compute PR;,,

Iterate until values converge

Simplified PageRank

First, tackle the simple case:
No random jump factor
No dangling links

Then, factor in these complexities...

Why do we need the random jump?
Where do dangling links come from?

Sample PageRank Iteration (1)

Iteration 1 n, (0.2) n, (0.166)

ENVANEN

Ny (02) 3 ny (03) 3\
/ n, (0.2) / n, (0.166)

n, (0.2) n, (0.3)

Sample PageRank Iteration (2)

Iteration 2 n, (0.166) n, (0.133)

ERVANER VAN

0}& n, (0.166) (/P n, (0.183)

n, (0.3) n, (0.2)

PageRank in MapReduce

ny[ny n, ny [Nz, n] nz[ng] n, [ng
map /N /N ' '
il ny ng ng ny ns

Reduce l/ X, ;/ ni ;/n | nf\ \24

ny [ny, ng ny[ns ng n;[n,] n,[ng]

PageRank Pseudo-Code

class Ma
method M \
El A\ |
| {1
for all nodel ' do
Ean l
«la
method Repvorianl »
for all p € connts [py, do
if IsNopeip) then
olse

Complete PageRank

Two additional complexities
What is the proper treatment of dangling nodes?
How do we factor in the random jump factor?
Solution:

Second pass to redistribute “missing PageRank mass” and
account for random jumps

1 m
p=a|l—|+(l-a)—=+p
{7

p is PageRank value from before, p'is updated PageRank value
|G| is the number of nodes in the graph
m is the missing PageRank mass

PageRank Convergence

Alternative convergence criteria

lterate until PageRank values don’t change
lterate until PageRank rankings don’t change
Fixed number of iterations

Convergence for web graphs?

Beyond PageRank

Link structure is important for web search

PageRank is one of many link-based features: HITS, SALSA, etc.
One of many thousands of features used in ranking...

Adversarial nature of web search
Link spamming
Spider traps
Keyword (Language Model) stuffing
Domain Sniping
Requester-Mirage

Digging In: Counters

How do you know how many dangling pages?

Use counters

Many built in counters
Visible on JobTracker
Keeps long-running jobs from being killed

Good for debuggin
gging static enum WordType {
STARTS WITH_DIGIT,

STARTS_WITH_LETTER
}

context.getCounter(WordType.STARTS_WITH_LETTER).increment(1);

RunningJob job = JobClient.runJob(conf); // blocks until job completes

Counters c = job.getCounters();
long cnt = c.getCounter(WordType.STARTS WITH_DIGIT);

Efficient Graph Algorithms

Sparse vs. dense graphs

Graph topologies

10° 10 10*
word frequency citanons web huts
(d) " 041"'\\ H)
100 >,

; 104 X

o -- \
.1 "t . 1077 e‘ e L)

! -

10° 10 100 10w 10t ?

10°
books sold telephone calls mei\-eeq
¥ a‘ (hy 100 (1)

(g) \\
s \
e 10 o A
. ~f : ! T T
0.01 01 1 10w 100 100 10’ 1 100 100
crater dimmeter i km peak intensaty tatensaty
10
\ U) l(fx § . lk) (l)
l(-(b-l \
R 10 16’
IO-! L O
1=y = T lOa e Rack ey oy o. 10° : :
10 10" 10 10 10 10’ 10° 10
wet worth m US dollars nane frequency population of aity

Figure from: Newman, M. E. J. (2005) “Power laws, Pareto
distributions and Zipf's law.” Contemporary Physics 46:323—-351.

Local Aggregation

Use combiners!

In-mapper combining design pattern also applicable

Maximize opportunities for local aggregation

Simple tricks: sorting the dataset in specific ways
Partition graphs

Graphs at Google
MapReduce — designed to handle PageRank

MapReduce still handles 80% of computations
Pregel (based on BSP)

Node — centric computation

Can send messages to neighbors
Can add edges, neighbors
Process previous messages
Handle conflict
Provide partitioning heuristics (reduce communication)

Not public

Source: Wikipedia (Japanese rock garden)

Digging In: BFS Node

3F NSO
)
{
LATOCe
i
. ¥ - .
WisSArnce = ¢

Nogeld = n

Dlggmg In: BFS Node

vond recdfields(e
ﬂ,po . N, Mo.().

Nodeld « in.recdlrn():

f(aType == TYPE _DISTANE)
OLAL0ACe = ‘"-WIP’.{);

B
L

 (aType == TYPE_COMPLETE) {
sOLstonce = \n. recelme():
}

*"(Qﬂ'ﬁktt e "tw Ar e +0f Imt ol

sAZ secemyl isnt, Wulénw)
}

tobiel);

Dlggmg In: BFS Node

P vold weite{Cotoly

Out n‘z‘t&y‘o((vee) vT)po).
out writelrt(nNodeld);

¢ (aType == TYPE_DISTANCE) {
ut. ariselns(nlistence),

}
F (aType o= TYPE_COMPLETE) §
out. aritelnt(mOistence);

)

mAdjocenyliss arite(out);
}

Digging In: BFS Node

String woStringl) |
; - e ()

s.oppenc(|).

. oppencimNodels);
s.oppenel)

s. oppenc(mDistonce);

s . oopene(p 1

(MAG10CeMyL 15t o=
S . Cppenc()i
b {

s.oppene();

(« B 3 < mAdjecenylint . s12¢(); (=) {

5. copenc(nidd jocenylist.get(1));
(1 < sAdiecemytist. sizel) - 1)
5. Cppenc(|

-
—

}
5. Cppeng()

s copane(|

3. 20557 ing);

Digging In: BFS Mapper

<IntNritable, |

0

e();

Digging In: BFS Mapper

fOverride

IS nd Lo SSruCtu e sesNCde L a(nCde geshedela()),
LntermedioteStructure. setType! TJYPESTRICTURE) ;
internedioteSsructure setAd socensyl i st(node . getad jocemt ist()),

context arite(nid, intersedicteSt ucture);

(node, getDistonce() we MALVALUE) {

Digging In: BFS Mapper

content, getlounter(’ SleNodes Map) , increment(1);

4 Rptain distods to b,

vcp.petnid.gec(), node. geslissence());

Arcdyl iasDfints of = node . getAdjacemylist(),
At dint o= fOfe. gecDistancel) ¢ 1,
/f Xpep trock OF shortest distonde 10 ighDors.
clint | =@ 1 <cof)sine(); iee) {
™ = adj.get(i);

F7 Kotp Lrock OF distante 1fF Lt's sho“ter than previdusly
F7 enCountered, 07 LY s BOoven 't enCountered this mOde.
f ((m0p.comainskey(relghbor) B8 dlst « wp.get(neighton))
o . Comtainsley(reighter)) {
0P ..ot neightbor, dlst);
)
}
}

Digging In: BFS Mapper

fOverride
Cleonepper«lmiritcble, 8F5%00e, IntAritable, BFSNodes Conmtext comtext)

' _ |
- » .

- . ' ()

»

(Emtry ¢ : sop.omurySet()) {
. setle.gotkev());
gist. sethocelidle. getiey());
it . setTypel TYPL_DISTANCE)

gist.setistencele. . pesvolue()):

cornext writelx, dist):

Digging In: BFS Reducer

*Overrice
resuce! , Lrerghle«B=SNodes Lterchle,

. ' 1
Lrergror«BFSN0ce» volues = (terghle. Lrergronrd);
- e;
- MAX_VALLE :
(velees . rosNext()) 4
» volues. next();

(n.getTypel) o= TYPL _STRUCTURE) {

» n.ottAd jocemyl i)

LSS TS s e e

:] - :~o\'. \-f‘ij:’_
(w 0 L < Liss.sine(): 1e0) {
arel iy w 1ist ot)
errit) 1Lst.eet(L);
)
fO08 . SetAd 0ty Lat((are)).
' ¢

- - 4
O0R _ AeT YR,

|

il _COMLETL):

OO0 . deenodeloinid. o))

SO0 et standel{dist),

(2iss |»

SA_WALUE)Y

Cornext , gotlourten{

LSt ruttureladeived

LOMTEXE . Lt

. y

) 1

‘ .
.

elved == @) |

’

struCiureRece i vy

-\
=

BFS Reducer

Digging In: Runner

For multiple iterations, use multiple jobs inside a for loop
Convergence?

Combiner?

Source: Wikipedia (Japanese rock garden)

