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Source: Wikipedia (Japanese rock garden) 



Old Business 
!  When do VMs get initialized? 

!  HW1 Done! 

!  HW2 on the Horizon ... 

!  Projects 
"  2-3 People 
"  Fairly open scope 
"  Next few lectures should give you ideas 



Today’s Agenda 
!  Introduction to information retrieval 

!  Basics of indexing and retrieval 

!  Inverted indexing in MapReduce 

!  Retrieval at scale 



First, nomenclature… 
!  Information retrieval (IR) 

"  Focus on textual information (= text/document retrieval) 
"  Other possibilities include image, video, music, … 

!  What do we search? 
"  Generically, “collections” 
"  Less-frequently used, “corpora” 

!  What do we find? 
"  Generically, “documents” 
"  Even though we may be referring to web pages, PDFs, 

PowerPoint slides, paragraphs, etc. 



Information Retrieval Cycle 
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The Central Problem in Search 

Searcher 
Author 

Concepts Concepts 

Query Terms Document Terms 

Do these represent the same concepts? 

“tragic love story” “fateful star-crossed romance” 



Abstract IR Architecture 
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How do we represent text? 
!  Remember: computers don’t “understand” anything! 

!  “Bag of words” 
"  Treat all the words in a document as index terms 
"  Assign a “weight” to each term based on “importance”  

(or, in simplest case, presence/absence of word) 
"  Disregard order, structure, meaning, etc. of the words 
"  Simple, yet effective! 

!  Assumptions 
"  Term occurrence is independent 
"  Document relevance is independent 
"  “Words” are well-defined 



What’s a word? 
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Sample Document 
McDonald's slims down spuds 
Fast-food chain to reduce certain types of 
fat in its french fries with new cooking oil. 
NEW YORK (CNN/Money) - McDonald's Corp. is 
cutting the amount of "bad" fat in its french fries 
nearly in half, the fast-food chain said Tuesday as 
it moves to make all its fried menu items 
healthier. 
But does that mean the popular shoestring fries 
won't taste the same? The company says no. "It's 
a win-win for our customers because they are 
getting the same great french-fry taste along with 
an even healthier nutrition profile," said Mike 
Roberts, president of McDonald's USA. 
But others are not so sure. McDonald's will not 
specifically discuss the kind of oil it plans to use, 
but at least one nutrition expert says playing with 
the formula could mean a different taste. 
Shares of Oak Brook, Ill.-based McDonald's 
(MCD: down $0.54 to $23.22, Research, 
Estimates) were lower Tuesday afternoon. It was 
unclear Tuesday whether competitors Burger 
King and Wendy's International (WEN: down 
$0.80 to $34.91, Research, Estimates) would 
follow suit. Neither company could immediately 
be reached for comment. 
… 

14 ! McDonalds 

12 ! fat 

11 ! fries 

8 ! new 

7 ! french  

6 ! company, said, nutrition 

5 ! food, oil, percent, reduce, 
taste, Tuesday 

… 

“Bag of Words” 



Counting Words… 

Documents 

Inverted 
Index 

Bag of 
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case folding, tokenization, stopword removal, stemming 

syntax, semantics, word knowledge, etc. 



Boolean Retrieval 
!  Users express queries as a Boolean expression 

"  AND, OR, NOT 
"  Can be arbitrarily nested 

!  Retrieval is based on the notion of sets 
"  Any given query divides the collection into two sets:  

retrieved, not-retrieved 
"  Pure Boolean systems do not define an ordering of the results 



Inverted Index: Boolean Retrieval 
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Boolean Retrieval 
!  To execute a Boolean query: 

"  Build query syntax tree 

"  For each clause, look up postings 

"  Traverse postings and apply Boolean operator 

!  Efficiency analysis 
"  Postings traversal is linear (assuming sorted postings) 
"  Start with shortest posting first  

( blue AND fish ) OR ham 

blue fish 

AND ham 

OR 

1 

2 blue 

fish 2 



Strengths and Weaknesses 
!  Strengths 

"  Precise, if you know the right strategies 
"  Precise, if you have an idea of what you’re looking for 
"  Implementations are fast and efficient 

!  Weaknesses 
"  Users must learn Boolean logic 
"  Boolean logic insufficient to capture the richness of language 
"  No control over size of result set: either too many hits or none 
"  When do you stop reading? All documents in the result set are 

considered “equally good” 
"  What about partial matches? Documents that “don’t quite match” 

the query may be useful also 



Ranked Retrieval 
!  Order documents by how likely they are to be relevant to 

the information need 
"  Estimate relevance(q, di) 
"  Sort documents by relevance 
"  Display sorted results 

!  User model 
"  Present hits one screen at a time, best results first 
"  At any point, users can decide to stop looking 

!  How do we estimate relevance? 
"  Assume document is relevant if it has a lot of query terms 
"  Replace relevance(q, di) with sim(q, di) 
"  Compute similarity of vector representations 



Vector Space Model 

Assumption: Documents that are “close together” in 
vector space “talk about” the same things 
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!
"

Therefore, retrieve documents based on how close the 
document is to the query (i.e., similarity ~ “closeness”) 



Similarity Metric 
!  Use “angle” between the vectors: 

!  Or, more generally, inner products: 



Term Weighting 
!  Term weights consist of two components 

"  Local: how important is the term in this document? 
"  Global: how important is the term in the collection?  

!  Here’s the intuition: 
"  Terms that appear often in a document should get high weights 
"  Terms that appear in many documents should get low weights 

!  How do we capture this mathematically? 
"  Term frequency (local) 
"  Inverse document frequency (global) 



TF.IDF Term Weighting 

weight assigned to term i in document j 

number of occurrence of term i in document j 

number of documents in entire collection 

number of documents with term i 
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Inverted Index: TF.IDF 
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Positional Indexes 
!  Store term position in postings 

!  Supports richer queries (e.g., proximity) 

!  Naturally, leads to larger indexes… 



[2,4] 

[3] 

[2,4] 

[2] 

[1] 

[1] 

[3] 

[2] 

[1] 

[1] 

[3] 

2 

1 

1 

2 

1 

1 

1 

1 

1 

1 

1 

Inverted Index: Positional Information 
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Retrieval in a Nutshell 
!  Look up postings lists corresponding to query terms 

!  Traverse postings for each query term 

!  Store partial query-document scores in accumulators 

!  Select top k results to return 



Retrieval: Document-at-a-Time 
!  Evaluate documents one at a time (score all query terms) 

!  Tradeoffs 
"  Small memory footprint (good) 
"  Must read through all postings (bad), but skipping possible 
"  More disk seeks (bad), but blocking possible 

fish 2 1 3 1 2 3 1 9 21 34 35 80 … 

blue 2 1 1 9 21 35 … 

Accumulators 
(e.g. priority queue) 

Document score in top k? 

Yes: Insert document score, extract-min if queue too large 
No: Do nothing 



Retrieval: Query-At-A-Time 
!  Evaluate documents one query term at a time  

"  Usually, starting from most rare term (often with tf-sorted postings) 

!  Tradeoffs 
"  Early termination heuristics (good) 
"  Large memory footprint (bad), but filtering heuristics possible 

fish 2 1 3 1 2 3 1 9 21 34 35 80 … 

blue 2 1 1 9 21 35 … 
Accumulators 

(e.g., hash) Score{q=x}(doc n) = s 



MapReduce it? 
!  The indexing problem 

"  Scalability is critical 
"  Must be relatively fast, but need not be real time 
"  Fundamentally a batch operation 
"  Incremental updates may or may not be important 
"  For the web, crawling is a challenge in itself 

!  The retrieval problem 
"  Must have sub-second response time 
"  For the web, only need relatively few results 

Perfect for MapReduce! 

Uh… not so good… 



Indexing: Performance Analysis 
!  Fundamentally, a large sorting problem 

"  Terms usually fit in memory 
"  Postings usually don’t 

!  How is it done on a single machine? 

!  How can it be done with MapReduce? 

!  First, let’s characterize the problem size: 
"  Size of vocabulary 
"  Size of postings 



Vocabulary Size: Heaps’ Law 

!  Heaps’ Law: linear in log-log space 

!  Vocabulary size grows unbounded! 

M is vocabulary size 
T is collection size (number of documents) 
k and b are constants 

Typically, k is between 30 and 100, b is between 0.4 and 0.6 



Heaps’ Law for RCV1 

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997) 

k = 44 
b = 0.49 

First 1,000,020 terms: 
     Predicted = 38,323 
     Actual = 38,365 

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008) 



Postings Size: Zipf’s Law 

!  Zipf’s Law: (also) linear in log-log space 
"  Specific case of Power Law distributions 

!  In other words: 
"  A few elements occur very frequently 
"  Many elements occur very infrequently 

cf is the collection frequency of i-th common term 
c is a constant 



Zipf’s Law for RCV1 

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997) 

Fit isn’t that good… 
but good enough! 

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008) 



Figure from: Newman, M. E. J. (2005) “Power laws, Pareto 
distributions and Zipf's law.” Contemporary Physics 46:323–351. 

Power Laws are everywhere! 



MapReduce: Index Construction 
!  Map over all documents 

"  Emit term as key, (docno, tf) as value 
"  Emit other information as necessary (e.g., term position) 

!  Sort/shuffle: group postings by term 

!  Reduce 
"  Gather and sort the postings (e.g., by docno or tf) 
"  Write postings to disk 

!  MapReduce does all the heavy lifting! 
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Inverted Indexing: Pseudo-Code 
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Inverted Indexing: Pseudo-Code 

What’s the problem? 



Scalability Bottleneck 
!  Initial implementation: terms as keys, postings as values 

"  Reducers must buffer all postings associated with key (to sort) 
"  What if we run out of memory to buffer postings? 

!  Uh oh! 
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How is this different? 
•  Let the framework do the sorting 
•  Term frequency implicitly stored 
•  Directly write postings to disk! 

Where have we seen this before? 



2 1 3 1 2 3 

2 1 3 1 2 3 

Postings Encoding 

1 fish 9 21 34 35 80 … 

1 fish 8 12 13 1 45 … 

Conceptually: 

In Practice: 

•  Don’t encode docnos, encode gaps (or d-gaps)  
•  But it’s not obvious that this saves space… 



Overview of Index Compression 
!  Byte-aligned vs. bit-aligned 

!  Non-parameterized bit-aligned 
"  Unary codes 
"  Truncated Binary 
"  ! codes 
"  " codes 

!  Parameterized bit-aligned 
"  Golomb codes (local Bernoulli model) 

Want more detail? Read Managing Gigabytes by Witten, Moffat, and Bell! 



Unary Codes 
!  x # 1 is coded as x-1 one bits, followed by 1 zero bit 

"  3 = 110 
"  4 = 1110 

!  Can’t encode 0 

!  Great for small numbers… horrible for large numbers 
"  Overly-biased for very small gaps 

Watch out! Slightly different definitions in different textbooks 



Truncated Binary 
!  You have pre-specified range N 

!  Insight: If N is not a power of 2, then you have unused 
codes 

!  If you expect smaller values to be more common, use 
fewer bits 

!  N=3 (1 unused): 0 = 0 (save a bit), 1=10 (shift by 1), 2=11 
(add 1) 

!  N=5 (3 unused): 0 = 00 (save a bit), 1=01(save a bit), 
3=110 (add 3), 4=111 (add 3)   



! codes 

!  x # 1 is coded in two parts: length and offset 
"  Start with binary encoded, remove highest-order bit = offset 
"  Length is number of binary digits, encoded in unary code 
"  Concatenate length + offset codes 

!  Example: 9 in binary is 1001 
"  Offset = 001 
"  Length = 4, in unary code = 1110 
"  ! code = 1110:001 

!  Analysis 
"  Offset = $log x% 
"  Length = $log x% +1 
"  Total = 2 $log x% +1 



" codes 

!  Similar to ! codes, except that length is encoded in ! code 

!  Example: 9 in binary is 1001 
"  Offset = 001 
"  Length = 4, in ! code = 11000 
"  " code = 11000:001 

!  ! codes = more compact for smaller numbers 
" codes = more compact for larger numbers 



Golomb Codes 
!  x # 1, parameter b: 

"  q + 1 in unary, where q = $ x  / b%  
"  r in truncated binary, where r = x – qb, in $log b% or &log b' bits 

!  Example: 
"  b = 3, r = 0, 1, 2 (0, 10, 11) 
"  b = 6, r = 0, 1, 2, 3, 4, 5 (00, 01, 100, 101, 110, 111) 
"  x = 9, b = 3: q = 3, r = 0, code = 110:0 
"  x = 9, b = 6: q = 1, r = 3, code = 10:101 

!  Optimal b ( ln(2) (N/df) ( 0.69 (N/df)  
"  Different b for every term! 



Comparison of Coding Schemes 

1 0 0 0 0:0 0:00 

2 10 10:0 100:0 0:10 0:01 

3 110 10:1 100:1 10:0 0:100 

4 1110 110:00 101:00 10:10 0:101 

5 11110 110:01 101:01 10:11 0:110 

6 111110 110:10 101:10 110:0 10:00 

7 1111110 110:11 101:11 110:10 10:01 

8 11111110 1110:000 11000:000 110:11 10:100 

9 111111110 1110:001 11000:001 1110:0 10:101 

10 1111111110 1110:010 11000:010 1110:10 10:110 

Unary ! " Golomb 

b=3 b=6 

Witten, Moffat, Bell, Managing Gigabytes (1999) 



Index Compression: Performance 

Witten, Moffat, Bell, Managing Gigabytes (1999) 

Unary 262 1918 
Binary 15 20 
! 6.51 6.63 
" 6.23 6.38 
Golomb 6.09 5.84 

Bible TREC 

Bible: King James version of the Bible; 31,101 verses (4.3 MB) 
TREC: TREC disks 1+2; 741,856 docs (2070 MB) 

Recommend best practice 

Comparison of Index Size (bits per pointer) 



Wait a minute ... 
!  I thought disk space was cheap 

!  Yes, but network bandwidth and caches are not 

!  More efficient representation means better throughput, 
more can fit in memory, less thrashing 

!  Still too much of a hassle?  Protocol buffers do variable 
length encoding when serializing (but not as well) 



Chicken and Egg? 

1 fish 

9 

[2,4] 

[9] 

21 [1,8,22] 

(value) (key) 

34 [23] 

35 [8,41] 

80 [2,9,76] 

fish 

fish 

fish 

fish 

fish 

Write directly to disk 

But wait! How do we set the 
Golomb parameter b? 

We need the df to set b… 

But we don’t know the df until we’ve 
seen all postings! 

… 

Recall: optimal b ( 0.69 (N/df) 

Sound familiar? 



Getting the df 
!  In the mapper: 

"  Emit “special” key-value pairs to keep track of df 

!  In the reducer: 
"  Make sure “special” key-value pairs come first: process them to 

determine df 

!  Remember: proper partitioning! 



Getting the df: Modified Mapper 

one fish, two fish 
Doc 1 

1 fish [2,4] 

(value) (key) 

1 one [1] 

1 two [3] 

! fish [1] 

! one [1] 

! two [1] 

Input document… 

Emit normal key-value pairs… 

Emit “special” key-value pairs to keep track of df… 



Getting the df: Modified Reducer 

1 fish 

9 
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[9] 
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(value) (key) 

34 [23] 
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Write postings directly to disk 

! fish [63] [82] [27] … 

… 

First, compute the df by summing contributions 
from all “special” key-value pair… 

Compute Golomb parameter b… 

Important: properly define sort order to make 
sure “special” key-value pairs come first! 

Where have we seen this before? 



MapReduce it? 
!  The indexing problem 

"  Scalability is paramount 
"  Must be relatively fast, but need not be real time 
"  Fundamentally a batch operation 
"  Incremental updates may or may not be important 
"  For the web, crawling is a challenge in itself 

!  The retrieval problem 
"  Must have sub-second response time 
"  For the web, only need relatively few results 

Just covered 

Now 



Retrieval with MapReduce? 
!  MapReduce is fundamentally batch-oriented 

"  Optimized for throughput, not latency 
"  Startup of mappers and reducers is expensive 

!  MapReduce is not suitable for real-time queries! 
"  Use separate infrastructure for retrieval… 



Important Ideas 
!  Partitioning (for scalability) 

!  Replication (for redundancy) 

!  Caching (for speed) 

!  Routing (for load balancing)  

The rest is just details! 



Term vs. Document Partitioning 

… 
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Document 
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Katta Architecture 
(Distributed Lucene) 

http://katta.sourceforge.net/ 



Streaming Dumbo 



Streaming 
!  Lightweight way of using Hadoop 

!  Uses Unix pipes to communicate between any program 
that uses stdin / stdout 

!  Slower than native Java, but good for one-offs 



Wordcount in Python (Streaming) 
!  Mapper -> Reducer 
#!/usr/bin/env python 
import sys 

#--- get all lines from stdin --- 
for line in sys.stdin: 
    #--- remove leading and trailing whitespace--- 
    line = line.strip() 

    #--- split the line into words --- 
    words = line.split() 

    #--- output tuples [word, 1] in tab-delimited format--- 
    for word in words:  
        print '%s\t%s' % (word, "1") 

#!/usr/bin/env python 
import sys 

last_key = None 

# input comes from STDIN 
for line in sys.stdin: 
    # remove leading and trailing whitespace 
    line = line.strip() 

    # parse the input we got from mapper.py 
    word, count = line.split('\t', 1) 

    if word != last_key: 
        if last_key: 
          print '%s\t%s' % (last_key, sum) 
        sum = 0 

    sum += int(count) 
    last_key = word 



Streaming 
!  Everything is text 

!  Cumbersome to work with serialization 

!  Harder to use command line arguments 

!  Difficult to control sort (important!) 

!  Enter Dumbo ... 



Dumbo 
!  Developed by Last.fm 

!  Python API 

!  Supports seamless serialization (duck typing) 

!  Supports primary and secondary keys for sorting / 
partitioning 

!  Still slower than native Java 



Dumbo Word Count 
!  Code 

!  Command: 
"  dumbo start wordcount.py -input combined.reviews -output tfidf –

hadoop /usr/lib/hadoop 

from dumbo import * 

def word_mapper(key, value): 
    for word in value.split(): 
        yield word, 1 

def runner(job): 
    job.additer(word_mapper, sumreducer, combiner=sumreducer) 

if __name__ == "__main__": 
    main(runner) 



Dumbo tf-idf 
!  Three stages: 

"  Turn documents into a bag of words keyed by document and word 
"  Compute tf 
"  Compute df and combine with tf to compute tf-idf 

!  Shows capabilities of Dumbo 
"  Multiple iterations of MapReduce (see in Java next week) 
"  Primary and secondary keys 
"  Gracefully handling of types 



Stage 1: Bag of Words 

from dumbo import * 
from math import log 

def word_mapper(key, value): 
    for word in value.split(): 
        yield (key, word), 1 

def runner(job): 
    job.additer(word_mapper, sumreducer, combiner=sumreducer) 

if __name__ == "__main__": 
    main(runner) 



Compute tf (driver) 

def runner(job): 
    job.additer(word_mapper, sumreducer, combiner=sumreducer) 
    multimapper = MultiMapper() 
    multimapper.add("", doc_total_mapper) 
    multimapper.add("", doc_term_mapper) 
    job.additer(multimapper, TermFrequencyReducer, Combiner) 

if __name__ == "__main__": 
    main(runner) 



Stage 2: Compute tf (map) 

@primary 
def doc_total_mapper(key, value): 
    doc = key[0] 
    yield doc, value 

@secondary 
def doc_term_mapper(key, value): 
    doc, word = key 
    yield doc, (word, value) 

class Reducer(JoinReducer): 
    def __init__(self): 
        self.sum = 0 
    def primary(self, key, values): 
        self.sum = sum(values) 

class Combiner(JoinCombiner): 
    def primary(self, key, values): 
        yield key, sum(values) 

class TermFrequencyReducer(Reducer): 
    def secondary(self, key, values): 
        for (doc, n) in values: 
            yield key, (doc, float(n) / self.sum) 

Why no secondary combiner? 



Complete driver 

def runner(job): 
    job.additer(word_mapper, sumreducer, combiner=sumreducer) 
    multimapper = MultiMapper() 
    multimapper.add("", doc_total_mapper) 
    multimapper.add("", doc_term_mapper) 
    job.additer(multimapper, TermFrequencyReducer, Combiner) 
    multimapper = MultiMapper() 
    multimapper.add("", doc_freq_mapper) 
    multimapper.add("", term_freq_mapper) 
    job.additer(multimapper, TfIdfReducer, Combiner) 
if __name__ == "__main__": 
    main(runner) 



Stage 3: Compute df (map) and tf-idf 
(reducer) 

@primary 
def doc_freq_mapper(key, value): 
    word = value[0] 
    yield word, 1 

@secondary 
def term_freq_mapper(key, value): 
    word = value[0] 
    tf = value[1] 
    doc = key 
    yield word, (doc, tf) 

class Reducer(JoinReducer): 
    def __init__(self): 
        self.sum = 0 
    def primary(self, key, values): 
        self.sum = sum(values) 

class TfIdfReducer(Reducer): 
    def __init__(self): 
        Reducer.__init__(self) 
        D = self.params["doccount"] 
        self.doccount = float(D) 

    def secondary(self, key, values): 
        idf = log(self.doccount / self.sum) 
        for (doc, tf) in values: 
            yield (key, doc), tf * idf 

What is the primary key doing? 
Where does D come from? 



Invocation 
!  dumbo start tfidf.py -input combined.reviews -output tfidf -

param doccount=10 –hadoop /usr/lib/hadoop 



Recap 
!  Information Retrieval 

!  Document Representation 

!  Representing Integers 

!  Dumbo, Python, and other ways of using Hadoop 

!  First glimpse of more complicated workflows 



Source: Wikipedia (Japanese rock garden) 

Questions? 


