
Text Retrieval Algorithms
Data-Intensive Information Processing Applications ! Session #4

Jordan Boyd-Graber
University of Maryland

Thursday, February 24, 2010

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Source: Wikipedia (Japanese rock garden)

Old Business
!  When do VMs get initialized?

!  HW1 Done!

!  HW2 on the Horizon ...

!  Projects
"  2-3 People
"  Fairly open scope
"  Next few lectures should give you ideas

Today’s Agenda
!  Introduction to information retrieval

!  Basics of indexing and retrieval

!  Inverted indexing in MapReduce

!  Retrieval at scale

First, nomenclature…
!  Information retrieval (IR)

"  Focus on textual information (= text/document retrieval)
"  Other possibilities include image, video, music, …

!  What do we search?
"  Generically, “collections”
"  Less-frequently used, “corpora”

!  What do we find?
"  Generically, “documents”
"  Even though we may be referring to web pages, PDFs,

PowerPoint slides, paragraphs, etc.

Information Retrieval Cycle

Source
Selection

Search

Query

Selection

Results

Examination

Documents

Delivery

Information

Query
Formulation

Resource

source reselection

System discovery
Vocabulary discovery
Concept discovery
Document discovery

The Central Problem in Search

Searcher
Author

Concepts Concepts

Query Terms Document Terms

Do these represent the same concepts?

“tragic love story” “fateful star-crossed romance”

Abstract IR Architecture

Documents Query

Hits

Representation
Function

Representation
Function

Query Representation Document Representation

Comparison
Function Index

offline online
document acquisition

(e.g., web crawling)

How do we represent text?
!  Remember: computers don’t “understand” anything!

!  “Bag of words”
"  Treat all the words in a document as index terms
"  Assign a “weight” to each term based on “importance”

(or, in simplest case, presence/absence of word)
"  Disregard order, structure, meaning, etc. of the words
"  Simple, yet effective!

!  Assumptions
"  Term occurrence is independent
"  Document relevance is independent
"  “Words” are well-defined

What’s a word?
天主教教宗若望保祿二世因感冒再度住進醫院。
這是他今年第二度因同樣的病因住院。 "#$% &'$()$ - *+,+- .-$")$&/

)%& (/-$0 (1 - 2+)+3$-#1)$ 2+,-$4)$
2-$+5% 6)/7)$ 2-")) "/&+#/ 2/89)$

-&")$ 2)+/' 2-:*) :($. +:)$;#(/:
2 "$8 ($(%) (" $<,/-4 98% 2+(+'#)*)$ -+-=:)$ 2">(") +"#-)$.

?@ABCDEF G HIJEKALMN ACOI HMALG@ PLA-QREGE STUVE
WEFGXR KI AMGIYZER KX[IQM DYMBXGMWELMKKMQM, G [IN
M\GXKFIB IQM QIKDYMLCYEBCYE]MAAXX.

!"#$ %#&"# ' ()*& %+,-. / 0+123 +45 2005-06 / %"$ 62%72 0+&"%
7# 8"0%9 &#' &" (&9: 0&3" ; <# &# %=>"# ?# @A# 073" ;

日米連合で台頭中国に対処…アーミテージ前副長官提言

(&� �$= ���� 25# !�� �%! `-')��*��'' ���
� �+ `��
� 	�+
��� �'''!
� �,�� #� ��
��� �",�.

Sample Document
McDonald's slims down spuds
Fast-food chain to reduce certain types of
fat in its french fries with new cooking oil.
NEW YORK (CNN/Money) - McDonald's Corp. is
cutting the amount of "bad" fat in its french fries
nearly in half, the fast-food chain said Tuesday as
it moves to make all its fried menu items
healthier.
But does that mean the popular shoestring fries
won't taste the same? The company says no. "It's
a win-win for our customers because they are
getting the same great french-fry taste along with
an even healthier nutrition profile," said Mike
Roberts, president of McDonald's USA.
But others are not so sure. McDonald's will not
specifically discuss the kind of oil it plans to use,
but at least one nutrition expert says playing with
the formula could mean a different taste.
Shares of Oak Brook, Ill.-based McDonald's
(MCD: down $0.54 to $23.22, Research,
Estimates) were lower Tuesday afternoon. It was
unclear Tuesday whether competitors Burger
King and Wendy's International (WEN: down
$0.80 to $34.91, Research, Estimates) would
follow suit. Neither company could immediately
be reached for comment.
…

14 ! McDonalds

12 ! fat

11 ! fries

8 ! new

7 ! french

6 ! company, said, nutrition

5 ! food, oil, percent, reduce,
taste, Tuesday

…

“Bag of Words”

Counting Words…

Documents

Inverted
Index

Bag of
Words

case folding, tokenization, stopword removal, stemming

syntax, semantics, word knowledge, etc.

Boolean Retrieval
!  Users express queries as a Boolean expression

"  AND, OR, NOT
"  Can be arbitrarily nested

!  Retrieval is based on the notion of sets
"  Any given query divides the collection into two sets:

retrieved, not-retrieved
"  Pure Boolean systems do not define an ordering of the results

Inverted Index: Boolean Retrieval

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

1

1

1

1

1

1

1 2 3

1

1

1

4

blue

cat

egg

fish

green

ham

hat

one

3

4

1

4

4

3

2

1

blue

cat

egg

fish

green

ham

hat

one

2

green eggs and ham
Doc 4

1 red

1 two

2 red

1 two

Boolean Retrieval
!  To execute a Boolean query:

"  Build query syntax tree

"  For each clause, look up postings

"  Traverse postings and apply Boolean operator

!  Efficiency analysis
"  Postings traversal is linear (assuming sorted postings)
"  Start with shortest posting first

(blue AND fish) OR ham

blue fish

AND ham

OR

1

2 blue

fish 2

Strengths and Weaknesses
!  Strengths

"  Precise, if you know the right strategies
"  Precise, if you have an idea of what you’re looking for
"  Implementations are fast and efficient

!  Weaknesses
"  Users must learn Boolean logic
"  Boolean logic insufficient to capture the richness of language
"  No control over size of result set: either too many hits or none
"  When do you stop reading? All documents in the result set are

considered “equally good”
"  What about partial matches? Documents that “don’t quite match”

the query may be useful also

Ranked Retrieval
!  Order documents by how likely they are to be relevant to

the information need
"  Estimate relevance(q, di)
"  Sort documents by relevance
"  Display sorted results

!  User model
"  Present hits one screen at a time, best results first
"  At any point, users can decide to stop looking

!  How do we estimate relevance?
"  Assume document is relevant if it has a lot of query terms
"  Replace relevance(q, di) with sim(q, di)
"  Compute similarity of vector representations

Vector Space Model

Assumption: Documents that are “close together” in
vector space “talk about” the same things

t1

d2

d1

d3

d4

d5

t3

t2

!
"

Therefore, retrieve documents based on how close the
document is to the query (i.e., similarity ~ “closeness”)

Similarity Metric
!  Use “angle” between the vectors:

!  Or, more generally, inner products:

Term Weighting
!  Term weights consist of two components

"  Local: how important is the term in this document?
"  Global: how important is the term in the collection?

!  Here’s the intuition:
"  Terms that appear often in a document should get high weights
"  Terms that appear in many documents should get low weights

!  How do we capture this mathematically?
"  Term frequency (local)
"  Inverse document frequency (global)

TF.IDF Term Weighting

weight assigned to term i in document j

number of occurrence of term i in document j

number of documents in entire collection

number of documents with term i

2

1

1

2

1

1

1

1

1

1

1

Inverted Index: TF.IDF

2

1

2

1

1

1

1 2 3

1

1

1

4

1

1

1

1

1

1

2

1

tf
df

blue

cat

egg

fish

green

ham

hat

one

1

1

1

1

1

1

2

1

blue

cat

egg

fish

green

ham

hat

one

1 1 red

1 1 two

1 red

1 two

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

green eggs and ham
Doc 4

3

4

1

4

4

3

2

1

2

2

1

Positional Indexes
!  Store term position in postings

!  Supports richer queries (e.g., proximity)

!  Naturally, leads to larger indexes…

[2,4]

[3]

[2,4]

[2]

[1]

[1]

[3]

[2]

[1]

[1]

[3]

2

1

1

2

1

1

1

1

1

1

1

Inverted Index: Positional Information

2

1

2

1

1

1

1 2 3

1

1

1

4

1

1

1

1

1

1

2

1

tf
df

blue

cat

egg

fish

green

ham

hat

one

1

1

1

1

1

1

2

1

blue

cat

egg

fish

green

ham

hat

one

1 1 red

1 1 two

1 red

1 two

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

green eggs and ham
Doc 4

3

4

1

4

4

3

2

1

2

2

1

Retrieval in a Nutshell
!  Look up postings lists corresponding to query terms

!  Traverse postings for each query term

!  Store partial query-document scores in accumulators

!  Select top k results to return

Retrieval: Document-at-a-Time
!  Evaluate documents one at a time (score all query terms)

!  Tradeoffs
"  Small memory footprint (good)
"  Must read through all postings (bad), but skipping possible
"  More disk seeks (bad), but blocking possible

fish 2 1 3 1 2 3 1 9 21 34 35 80 …

blue 2 1 1 9 21 35 …

Accumulators
(e.g. priority queue)

Document score in top k?

Yes: Insert document score, extract-min if queue too large
No: Do nothing

Retrieval: Query-At-A-Time
!  Evaluate documents one query term at a time

"  Usually, starting from most rare term (often with tf-sorted postings)

!  Tradeoffs
"  Early termination heuristics (good)
"  Large memory footprint (bad), but filtering heuristics possible

fish 2 1 3 1 2 3 1 9 21 34 35 80 …

blue 2 1 1 9 21 35 …
Accumulators

(e.g., hash) Score{q=x}(doc n) = s

MapReduce it?
!  The indexing problem

"  Scalability is critical
"  Must be relatively fast, but need not be real time
"  Fundamentally a batch operation
"  Incremental updates may or may not be important
"  For the web, crawling is a challenge in itself

!  The retrieval problem
"  Must have sub-second response time
"  For the web, only need relatively few results

Perfect for MapReduce!

Uh… not so good…

Indexing: Performance Analysis
!  Fundamentally, a large sorting problem

"  Terms usually fit in memory
"  Postings usually don’t

!  How is it done on a single machine?

!  How can it be done with MapReduce?

!  First, let’s characterize the problem size:
"  Size of vocabulary
"  Size of postings

Vocabulary Size: Heaps’ Law

!  Heaps’ Law: linear in log-log space

!  Vocabulary size grows unbounded!

M is vocabulary size
T is collection size (number of documents)
k and b are constants

Typically, k is between 30 and 100, b is between 0.4 and 0.6

Heaps’ Law for RCV1

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

k = 44
b = 0.49

First 1,000,020 terms:
 Predicted = 38,323
 Actual = 38,365

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008)

Postings Size: Zipf’s Law

!  Zipf’s Law: (also) linear in log-log space
"  Specific case of Power Law distributions

!  In other words:
"  A few elements occur very frequently
"  Many elements occur very infrequently

cf is the collection frequency of i-th common term
c is a constant

Zipf’s Law for RCV1

Reuters-RCV1 collection: 806,791 newswire documents (Aug 20, 1996-August 19, 1997)

Fit isn’t that good…
but good enough!

Manning, Raghavan, Schütze, Introduction to Information Retrieval (2008)

Figure from: Newman, M. E. J. (2005) “Power laws, Pareto
distributions and Zipf's law.” Contemporary Physics 46:323–351.

Power Laws are everywhere!

MapReduce: Index Construction
!  Map over all documents

"  Emit term as key, (docno, tf) as value
"  Emit other information as necessary (e.g., term position)

!  Sort/shuffle: group postings by term

!  Reduce
"  Gather and sort the postings (e.g., by docno or tf)
"  Write postings to disk

!  MapReduce does all the heavy lifting!

1

1

2

1

1

2 2

1
1

1

1
1

1

1

1

2

Inverted Indexing with MapReduce

1 one

1 two

1 fish

one fish, two fish
Doc 1

2 red

2 blue

2 fish

red fish, blue fish
Doc 2

3 cat

3 hat

cat in the hat
Doc 3

1 fish 2

1 one
1 two

2 red

3 cat
2 blue

3 hat

Shuffle and Sort: aggregate values by keys

Map

Reduce

Inverted Indexing: Pseudo-Code

[2,4]

[1]

[3]

[1]

[2]

[1]

[1]

[3]

[2]

[3]
[2,4]

[1]

[2,4]

[2,4]

[1]

[3]

1

1

2

1

1

2

1

1

2 2

1
1

1

1
1

1

Positional Indexes

1 one

1 two

1 fish

2 red

2 blue

2 fish

3 cat

3 hat

1 fish 2

1 one
1 two

2 red

3 cat
2 blue

3 hat

Shuffle and Sort: aggregate values by keys

Map

Reduce

one fish, two fish
Doc 1

red fish, blue fish
Doc 2

cat in the hat
Doc 3

Inverted Indexing: Pseudo-Code

What’s the problem?

Scalability Bottleneck
!  Initial implementation: terms as keys, postings as values

"  Reducers must buffer all postings associated with key (to sort)
"  What if we run out of memory to buffer postings?

!  Uh oh!

[2,4]

[9]

[1,8,22]

[23]

[8,41]

[2,9,76]

[2,4]

[9]

[1,8,22]

[23]

[8,41]

[2,9,76]

2

1

3

1

2

3

Another Try…

1 fish

9

21

(values) (key)

34

35

80

1 fish

9

21

(values) (keys)

34

35

80

fish

fish

fish

fish

fish

How is this different?
•  Let the framework do the sorting
•  Term frequency implicitly stored
•  Directly write postings to disk!

Where have we seen this before?

2 1 3 1 2 3

2 1 3 1 2 3

Postings Encoding

1 fish 9 21 34 35 80 …

1 fish 8 12 13 1 45 …

Conceptually:

In Practice:

•  Don’t encode docnos, encode gaps (or d-gaps)
•  But it’s not obvious that this saves space…

Overview of Index Compression
!  Byte-aligned vs. bit-aligned

!  Non-parameterized bit-aligned
"  Unary codes
"  Truncated Binary
"  ! codes
"  " codes

!  Parameterized bit-aligned
"  Golomb codes (local Bernoulli model)

Want more detail? Read Managing Gigabytes by Witten, Moffat, and Bell!

Unary Codes
!  x # 1 is coded as x-1 one bits, followed by 1 zero bit

"  3 = 110
"  4 = 1110

!  Can’t encode 0

!  Great for small numbers… horrible for large numbers
"  Overly-biased for very small gaps

Watch out! Slightly different definitions in different textbooks

Truncated Binary
!  You have pre-specified range N

!  Insight: If N is not a power of 2, then you have unused
codes

!  If you expect smaller values to be more common, use
fewer bits

!  N=3 (1 unused): 0 = 0 (save a bit), 1=10 (shift by 1), 2=11
(add 1)

!  N=5 (3 unused): 0 = 00 (save a bit), 1=01(save a bit),
3=110 (add 3), 4=111 (add 3)

! codes

!  x # 1 is coded in two parts: length and offset
"  Start with binary encoded, remove highest-order bit = offset
"  Length is number of binary digits, encoded in unary code
"  Concatenate length + offset codes

!  Example: 9 in binary is 1001
"  Offset = 001
"  Length = 4, in unary code = 1110
"  ! code = 1110:001

!  Analysis
"  Offset = $log x%
"  Length = $log x% +1
"  Total = 2 $log x% +1

" codes

!  Similar to ! codes, except that length is encoded in ! code

!  Example: 9 in binary is 1001
"  Offset = 001
"  Length = 4, in ! code = 11000
"  " code = 11000:001

!  ! codes = more compact for smaller numbers
" codes = more compact for larger numbers

Golomb Codes
!  x # 1, parameter b:

"  q + 1 in unary, where q = $ x / b%
"  r in truncated binary, where r = x – qb, in $log b% or &log b' bits

!  Example:
"  b = 3, r = 0, 1, 2 (0, 10, 11)
"  b = 6, r = 0, 1, 2, 3, 4, 5 (00, 01, 100, 101, 110, 111)
"  x = 9, b = 3: q = 3, r = 0, code = 110:0
"  x = 9, b = 6: q = 1, r = 3, code = 10:101

!  Optimal b (ln(2) (N/df) (0.69 (N/df)
"  Different b for every term!

Comparison of Coding Schemes

1 0 0 0 0:0 0:00

2 10 10:0 100:0 0:10 0:01

3 110 10:1 100:1 10:0 0:100

4 1110 110:00 101:00 10:10 0:101

5 11110 110:01 101:01 10:11 0:110

6 111110 110:10 101:10 110:0 10:00

7 1111110 110:11 101:11 110:10 10:01

8 11111110 1110:000 11000:000 110:11 10:100

9 111111110 1110:001 11000:001 1110:0 10:101

10 1111111110 1110:010 11000:010 1110:10 10:110

Unary ! " Golomb

b=3 b=6

Witten, Moffat, Bell, Managing Gigabytes (1999)

Index Compression: Performance

Witten, Moffat, Bell, Managing Gigabytes (1999)

Unary 262 1918
Binary 15 20
! 6.51 6.63
" 6.23 6.38
Golomb 6.09 5.84

Bible TREC

Bible: King James version of the Bible; 31,101 verses (4.3 MB)
TREC: TREC disks 1+2; 741,856 docs (2070 MB)

Recommend best practice

Comparison of Index Size (bits per pointer)

Wait a minute ...
!  I thought disk space was cheap

!  Yes, but network bandwidth and caches are not

!  More efficient representation means better throughput,
more can fit in memory, less thrashing

!  Still too much of a hassle? Protocol buffers do variable
length encoding when serializing (but not as well)

Chicken and Egg?

1 fish

9

[2,4]

[9]

21 [1,8,22]

(value) (key)

34 [23]

35 [8,41]

80 [2,9,76]

fish

fish

fish

fish

fish

Write directly to disk

But wait! How do we set the
Golomb parameter b?

We need the df to set b…

But we don’t know the df until we’ve
seen all postings!

…

Recall: optimal b (0.69 (N/df)

Sound familiar?

Getting the df
!  In the mapper:

"  Emit “special” key-value pairs to keep track of df

!  In the reducer:
"  Make sure “special” key-value pairs come first: process them to

determine df

!  Remember: proper partitioning!

Getting the df: Modified Mapper

one fish, two fish
Doc 1

1 fish [2,4]

(value) (key)

1 one [1]

1 two [3]

! fish [1]

! one [1]

! two [1]

Input document…

Emit normal key-value pairs…

Emit “special” key-value pairs to keep track of df…

Getting the df: Modified Reducer

1 fish

9

[2,4]

[9]

21 [1,8,22]

(value) (key)

34 [23]

35 [8,41]

80 [2,9,76]

fish

fish

fish

fish

fish
Write postings directly to disk

! fish [63] [82] [27] …

…

First, compute the df by summing contributions
from all “special” key-value pair…

Compute Golomb parameter b…

Important: properly define sort order to make
sure “special” key-value pairs come first!

Where have we seen this before?

MapReduce it?
!  The indexing problem

"  Scalability is paramount
"  Must be relatively fast, but need not be real time
"  Fundamentally a batch operation
"  Incremental updates may or may not be important
"  For the web, crawling is a challenge in itself

!  The retrieval problem
"  Must have sub-second response time
"  For the web, only need relatively few results

Just covered

Now

Retrieval with MapReduce?
!  MapReduce is fundamentally batch-oriented

"  Optimized for throughput, not latency
"  Startup of mappers and reducers is expensive

!  MapReduce is not suitable for real-time queries!
"  Use separate infrastructure for retrieval…

Important Ideas
!  Partitioning (for scalability)

!  Replication (for redundancy)

!  Caching (for speed)

!  Routing (for load balancing)

The rest is just details!

Term vs. Document Partitioning

…

T

D

T1

T2

T3

D

T …

D1 D2 D3

Term
Partitioning

Document
Partitioning

Katta Architecture
(Distributed Lucene)

http://katta.sourceforge.net/

Streaming Dumbo

Streaming
!  Lightweight way of using Hadoop

!  Uses Unix pipes to communicate between any program
that uses stdin / stdout

!  Slower than native Java, but good for one-offs

Wordcount in Python (Streaming)
!  Mapper -> Reducer
#!/usr/bin/env python
import sys

#--- get all lines from stdin ---
for line in sys.stdin:
 #--- remove leading and trailing whitespace---
 line = line.strip()

 #--- split the line into words ---
 words = line.split()

 #--- output tuples [word, 1] in tab-delimited format---
 for word in words:
 print '%s\t%s' % (word, "1")

#!/usr/bin/env python
import sys

last_key = None

input comes from STDIN
for line in sys.stdin:
 # remove leading and trailing whitespace
 line = line.strip()

 # parse the input we got from mapper.py
 word, count = line.split('\t', 1)

 if word != last_key:
 if last_key:
 print '%s\t%s' % (last_key, sum)
 sum = 0

 sum += int(count)
 last_key = word

Streaming
!  Everything is text

!  Cumbersome to work with serialization

!  Harder to use command line arguments

!  Difficult to control sort (important!)

!  Enter Dumbo ...

Dumbo
!  Developed by Last.fm

!  Python API

!  Supports seamless serialization (duck typing)

!  Supports primary and secondary keys for sorting /
partitioning

!  Still slower than native Java

Dumbo Word Count
!  Code

!  Command:
"  dumbo start wordcount.py -input combined.reviews -output tfidf –

hadoop /usr/lib/hadoop

from dumbo import *

def word_mapper(key, value):
 for word in value.split():
 yield word, 1

def runner(job):
 job.additer(word_mapper, sumreducer, combiner=sumreducer)

if __name__ == "__main__":
 main(runner)

Dumbo tf-idf
!  Three stages:

"  Turn documents into a bag of words keyed by document and word
"  Compute tf
"  Compute df and combine with tf to compute tf-idf

!  Shows capabilities of Dumbo
"  Multiple iterations of MapReduce (see in Java next week)
"  Primary and secondary keys
"  Gracefully handling of types

Stage 1: Bag of Words

from dumbo import *
from math import log

def word_mapper(key, value):
 for word in value.split():
 yield (key, word), 1

def runner(job):
 job.additer(word_mapper, sumreducer, combiner=sumreducer)

if __name__ == "__main__":
 main(runner)

Compute tf (driver)

def runner(job):
 job.additer(word_mapper, sumreducer, combiner=sumreducer)
 multimapper = MultiMapper()
 multimapper.add("", doc_total_mapper)
 multimapper.add("", doc_term_mapper)
 job.additer(multimapper, TermFrequencyReducer, Combiner)

if __name__ == "__main__":
 main(runner)

Stage 2: Compute tf (map)

@primary
def doc_total_mapper(key, value):
 doc = key[0]
 yield doc, value

@secondary
def doc_term_mapper(key, value):
 doc, word = key
 yield doc, (word, value)

class Reducer(JoinReducer):
 def __init__(self):
 self.sum = 0
 def primary(self, key, values):
 self.sum = sum(values)

class Combiner(JoinCombiner):
 def primary(self, key, values):
 yield key, sum(values)

class TermFrequencyReducer(Reducer):
 def secondary(self, key, values):
 for (doc, n) in values:
 yield key, (doc, float(n) / self.sum)

Why no secondary combiner?

Complete driver

def runner(job):
 job.additer(word_mapper, sumreducer, combiner=sumreducer)
 multimapper = MultiMapper()
 multimapper.add("", doc_total_mapper)
 multimapper.add("", doc_term_mapper)
 job.additer(multimapper, TermFrequencyReducer, Combiner)
 multimapper = MultiMapper()
 multimapper.add("", doc_freq_mapper)
 multimapper.add("", term_freq_mapper)
 job.additer(multimapper, TfIdfReducer, Combiner)
if __name__ == "__main__":
 main(runner)

Stage 3: Compute df (map) and tf-idf
(reducer)

@primary
def doc_freq_mapper(key, value):
 word = value[0]
 yield word, 1

@secondary
def term_freq_mapper(key, value):
 word = value[0]
 tf = value[1]
 doc = key
 yield word, (doc, tf)

class Reducer(JoinReducer):
 def __init__(self):
 self.sum = 0
 def primary(self, key, values):
 self.sum = sum(values)

class TfIdfReducer(Reducer):
 def __init__(self):
 Reducer.__init__(self)
 D = self.params["doccount"]
 self.doccount = float(D)

 def secondary(self, key, values):
 idf = log(self.doccount / self.sum)
 for (doc, tf) in values:
 yield (key, doc), tf * idf

What is the primary key doing?
Where does D come from?

Invocation
!  dumbo start tfidf.py -input combined.reviews -output tfidf -

param doccount=10 –hadoop /usr/lib/hadoop

Recap
!  Information Retrieval

!  Document Representation

!  Representing Integers

!  Dumbo, Python, and other ways of using Hadoop

!  First glimpse of more complicated workflows

Source: Wikipedia (Japanese rock garden)

Questions?

