Data-Intensive Information Processing Applications — Session #3

MapReduce Algorithm Design

sy Jordan Boyd-Graber

V@/ University of Maryland

4,‘*“ S
= Thursday, February 17, 2011

‘@ ®®©| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Issues from Last Class

o Everybody has access to the cluster?
o Hardware Sorting

o Names

e Ying : Jordan Boyd-Graber
e Ychen126: Yingying Chen

o Input in Hadoop
o What is a node?

o Equal time: Avro

Input Types

o Recall: FileSplits (split), InputFormat (parse),
RecordReader (iterate)

o InputFormat Options

e TextlnputFormat (offset, line text)
e StreamlnputFormat

« Use StreamXmlRecordReader if values are XML documents
e KeyValueTextinputFormat (key, line text)

+ Settable delimiter (tab is default)
e SequenceFilelnputFormat (key, binary)

« Use for binary / serialized input
e MapkFile

-+ Just like SequenceFile, but sorted (key must be comparable)
e Other: HBase, conventional databases

What is a node?

o Not always 1 node per {computer, core}

o In many cases, nodes are virtual machines running in
nodes (e.g. WorldLingo)

o How many nodes per machine depends on typical usage
(e.g. IO vs CPU)

Avro

o Much like protocol buffers
o Uses JSON to compile schema

o Newer, but better connected with Hadoop

e Could have better integration, but not there yet

o Benifits compared to protocol buffers

e Schema is transmitted with serialization
e Does not require compiling code

o Limitations compared to protocol buffers

e Schema is transmitted with serialization
e Cannot have nested fields
e Cannot have null fields

o Again, not required to use them

Today’s Agenda

o “The datacenter is the computer”

e Understanding the design of warehouse-sized computes

o MapReduce algorithm design

e How do you express everything in terms of m, r, c, p?
e Toward “design patterns”

The datacenter is the computer

“Big Ideas”

o Scale “out”, not “up”
e Limits of SMP and large shared-memory machines
o Move processing to the data
e Cluster have limited bandwidth
o Process data sequentially, avoid random access

e Seeks are expensive, disk throughput is reasonable

o Seamless scalability

e From the mythical man-month to the tradable machine-hour

Source: NY Times (6/14/2006)

Source: Bonneville Power Administration

Building Blocks

Source: Barroso and Urs Hélzle (2009)

Storage Hierarchy

One server

DRAM: 16GB, 100ns, 20GB/s
Disk: 278, 10ms, 200MB/s

Local rack (80 servers)

ORAM: 178, 300us, 100MB/s
Disk: 160TB, 11ms, 100MB/s

Cluster (30 racks)

DRAM: 3078, 500us. 10MB/s
Disk: 4.80PB, 12ms, 10MB/s

Source: Barroso and Urs Hélzle (2009)

Storage Hierarchy

wmpum | atency (Us) =fes Bandwidth (MB/sec) e Capacity (GB)

10000000

1000000

100000 4

10000

1000

100

10

0.1

Local DRAM
Local Disk

Rack DRAM

Rack Disk
Datacenter DRAM
Datacenter Disk

Source: Barroso and Urs Hélzle (2009)

Anatomy of a Datacenter

“Computer Alr Handling Unit (CRAC)
-nr.nr—.wc' Few Limet
. Cn I Duseow Conligarstion

* Dprmaion Confipumation Lsed Wil Rased oo 9 Urosle
A Prosssrscd Suppty A Plonas Wi Noss Sagply Dvfscn

~ Individual Colocation Computer Cablnets

et T
« Rodunduocy Theowgh Daad PR Wik ypoul Capacioa (017 y - et

Ieteprsd Siater Tonmafer Swanh (515
Emergency Diesel Generators
[-MM(M- Yol Eloowsend Lond To Buiiling
* Mukigie Genorasors Can Dhe Thocwcally Combesad & rd
Por e g Coras
» Cn e Locaed Indoory O Osadones At Gendle O O Moot

o Chadind Vgl ataniy Regn v S Utomantary Fom fweat e

o Can By Locasod Undenpeonand Oy A2
Crnde Or Indoves

-y
= Lp To 1000 AVA P Modelc
o Cabatn And csery Smnge Ox Botary Tiywheuk
* Wangds Redomsban y Comager Coan B Deosagood
Swinchpear
¢ lachaden bocomung Sarvice Asd Dear boses

© Dt Dndedndmne [o Mo hane ol §opmpmanst
o Dverivaton To Secondery Floctres Ngupesest Ve LIS

Flouiie Saie S Ft v, -
» Suctes Cnment OF Molngie Cabsoon Wm0
Sovwred Parsiwms (Cagon, Wall, [5)

.~_____/"
Hear Refecrion Devices Pamp Room
» Drycoeken, Air Coslod (helers, bae * Lsand Yo Pump Combarnen U0 B B ster Remvown Dvyionden Amd CRAL Lin
* U T 4390 Yom Copuiity Par Uit s Addeosd Fgupenent Inchades | xpesscon Taok, (liyod Food Sywem
* Mosmod M Ceade O On Roof o N Design (Sndy Pamg)

o N Dosdge

Source: Barroso and Urs Hélzle (2009)

Why commodity machines?

HP INTEGRITY HP PROLIANT
SUPERDOME-ITANIUM2 MIL.350 GS
Processor 64 sockets, 128 cores 1 socket, quad-core,
(dual-threaded), 1.6 GHz 2.66 GHz X5355 CPU,
Itanium?2, 12 MB 8 MB last-level cache
last-Jevel cache
Memory 2048 GB 24 GB
Disk storage 320,974 GB, 7,056 drives 3,961 GB, 105 drives
TPC-C pr'xc."]\crfonu;mcc $2.953/tpmC $0.73/ lme
price/performance $1. 28/ ransactions $0. 10/ ransactions
(server HW only) per minute per minute
Price/performance $2.39/transactions $0.12/transactions
(server HW only) per minute per minute
(no discounts)

Source: Barroso and Urs Holzle (2009); performance figures from late 2007

Why commodity machines?

o Diminishing returns for high-end machines
o Power usage is lower for mid-range machines

o If you're doing it right, many processes are memory

Source: Barroso and Urs Holzle (2009); performance figures from late 2007

What about communication?

o Nodes need to talk to each other!

e SMP: latencies ~100 ns
e LAN: latencies ~100 us

o Scaling “up” vs. scaling “out”

e Smaller cluster of SMP machines vs. larger cluster of commodity
machines

e E.g., 8 128-core machines vs. 128 8-core machines
e Note: no single SMP machine is big enough

o Let’'s model communication overhead...

Source: analysis on this an subsequent slides from Barroso and Urs Hoélzle (2009)

Modeling Communication Costs

o Simple execution cost model:

e Total cost = cost of computation + cost to access global data
e Fraction of local access inversely proportional to size of cluster
e n nodes (ignore cores for now)

1ms+fx[100ns x n+ 100 us x (1 - 1/n)]

* Light communication: f =1
* Medium communication: f=10
- Heavy communication: f=100

o What are the costs in parallelization?

Cost of Parallelization

Nomalized execution time

1000 +

meadium communication

high communicaton

*

g

number of nodes

> = >
/ gt communicaton
W —_
4 8 12 16 20 24 28

Advantages of scaling “up”

So why not?

g 30 -
»
b //.‘
E 25 + .26(‘
iz K
: w 20 %
2
24 \
~ - 15 4 o
o o
v £
s ¢
® L 10 1
o>
<
-
g) Aot COmmunicaseon
uz. 0+ . — - A:?";
= o 2048 4192

Cluster size (number of cores)

Seeks vs. Scans

o Consider a 1 TB database with 100 byte records

e \We want to update 1 percent of the records

o Scenario 1: random access

e Each update takes ~30 ms (seek, read, write)
e 108 updates = ~35 days

o Scenario 2: rewrite all records

e Assume 100 MB/s throughput
e Time = 5.6 hours(!)

o Lesson: avoid random seeks!

Source: Ted Dunning, on Hadoop mailing list

Justifying the “Big Ideas”

o Scale “out”, not “up”
e Limits of SMP and large shared-memory machines
o Move processing to the data
e Cluster have limited bandwidth
o Process data sequentially, avoid random access

e Seeks are expensive, disk throughput is reasonable

o Seamless scalability

e From the mythical man-month to the tradable machine-hour

L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from disk
Send packet CA — Netherlands — CA

* According to Jeff Dean (LADIS 2009 keynote)

Numbers Everyone Should Know*

0.5ns

S5 ns

7 ns

25 ns

100 ns

20,000 ns
250,000 ns
500,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns

MapReduce Algorithm Design

MapReduce: Recap

o Programmers must specify:
map (k, v) — <k’, v’>*
reduce (k’, v') — <k’, v'>*
e All values with the same key are reduced together

o Optionally, also:

partition (k’, number of partitions) — partition for k’

e Often a simple hash of the key, e.g., hash(k’) mod n

e Divides up key space for parallel reduce operations
combine (k’, V') — <k’, v’>*

e Mini-reducers that run in memory after the map phase
e Used as an optimization to reduce network traffic

o The execution framework handles everything else...

<] . D

map map map map

/ ! ! '
K-8

combine combine combine combine

' ! ! '

partition partition partition partition

Shuffle and Sort: aggregate values by keys

B> B - IHEIE

I .

reduce reduce reduce

r1 r2 r3

“Everything Else”

o The execution framework handles everything else...

e Scheduling: assigns workers to map and reduce tasks

e “Data distribution”. moves processes to data

e Synchronization: gathers, sorts, and shuffles intermediate data
e Errors and faults: detects worker failures and restarts

o Limited control over data and execution flow

e All algorithms must expressed inm, r, c, p

o You don’t know:

e \Where mappers and reducers run

e When a mapper or reducer begins or finishes

e Which input a particular mapper is processing

e Which intermediate key a particular reducer is processing

Tools for Synchronization

o Cleverly-constructed data structures

e Bring partial results together
o Sort order of intermediate keys

e Control order in which reducers process keys

o Partitioner

e Control which reducer processes which keys

o Preserving state in mappers and reducers

e Capture dependencies across multiple keys and values

Preserving State

Mapper object
> state
/
/
/
I configure
|
|
|
\
\ map
close

<€— one object per task —>

€—— APl initialization hook =————>

<€ one call per in
key-value pair

€ APl clean

put

one call per ———>
intermediate key

up hook >

Reducer object

state -

configure

reduce

close

Scalable Hadoop Algorithms: Themes

o Avoid object creation

e Inherently costly operation
e Garbage collection

o Avoid buffering

e Limited heap size
e \Works for small datasets, but won’t scale!

Importance of Local Aggregation

o ldeal scaling characteristics:

e Twice the data, twice the running time
e Twice the resources, half the running time

o Why can’t we achieve this?

e Synchronization requires communication
e Communication kills performance

o Thus... avoid communication!

e Reduce intermediate data via local aggregation
e Combiners can help

Shuffle and Sort

Mapper intermediate files
(on disk)

l merged spills

(on disk) P—
. >
— Combiner —> Reducer
—>

| ————

circular buffer
(in memory)

i

AN o

other reducers
spills (on disk)

other mappers

Word Count: Baseline

1: class MAPPER

method Mari(docid a. doc o)
3 for all term ¢ € doe d do
| EsMir{term ¢, count 1)

1: class REDUCER

method REDUCE(term £, counts ¢y, ¢,

3 S - U

| for all count ¢ € counts [cy. ;...] do
S SUTTE 4 ¢

t EsMir(tern ¢, count s)

What’s the impact of combiners?

Word Count: Version 1

1: class MAPPER
method Map(docid a. doc d)

3: H — new ASSOCIATIVEARRAY

I: for all term f € doc d do

5: H{t} — H{t} +1 - Tally counts for entire document
6: for all term t & H do

T Easir(term , count H{t})

Are combiners still needed?

Word Count: Version 2

S

1: class MAPPER ac‘os
2 method INITIALIZE g\a“e \

e S
3: H « new ASSOCIATIVEARRAY se“’ 2

e
! method Mav(docid a. doc d) \ke\J 9 ‘J' N
5 for all term f € doe d do 9 we
' Hi{t} — H{t} +1 w > Tally counts across documents

method Crosg
for all term t € H do
o ExiT(term t,count H{¢})

x

Are combiners still needed?

Design Pattern for Local Aggregation

o “In-mapper combining”

e Fold the functionality of the combiner into the mapper by
preserving state across multiple map calls

o Advantages

e Speed
e Why is this faster than actual combiners?

o Disadvantages

e Explicit memory management required
e Potential for order-dependent bugs

Combiner Design

o Combiners and reducers share same method signature

e Sometimes, reducers can serve as combiners
e Often, not...

o Remember: combiner are optional optimizations

e Should not affect algorithm correctness
e May be run 0, 1, or multiple times

o Example: find average of all integers associated with the
same key

Computing the Mean: Version 1

1: class MAPPER
method Map(string f, integer r)

Esrr(st ring ¢, wteger r)

1: class REDUCER

method ReEpuod l.\f!'ill',: I, iltft-f.',o':h [' ETEE |
surm — U
| 7l i)
for all integer r € integers [ry.ra....] do
t ~) sSien ™)
T cntl — cnt + I
o Vavg = SUIn nt
0 Easrr(string ¢, integer r,,)

Why can’t we use reducer as combiner?

Computing the Mean: Version 2

1: class MAPPER
2 method Map(string £, integer r)

.

Ensir(string f, integer r)

1- class COMBINER

2 method COMBINE(string {. integers [ry, rs....])

3 surm ()

1 cnt «— U

h for all integer r € integers |[ry.ry... .| do

O SN ~~ S <+ 1

T ent «— ent 41

8 Exsir(string ¢, pair (sum.cnt)) > Separate sum and count
1: class REDUVCER

2 method REDUCE(string 1, pairs [(5y, ¢y), (82.02)...])
3 sum — U

| cnt — 1)

b for all pair (s.c¢) € pairs !Is, cy) (=2.02) ., [do
O SN = NUImt S5

T ent — ont + ¢

n Favg *= surm/cnt

0 EMiT(string f. integer ry,.,)

Why doesn’t this work?

Computing the Mean: Version 3

1: class MAPPER
2 method Map(string /. integer r)
3 EMir(string f, pair (r, 1))

1: clasg COMBINER

2 method CoMBINE(string £, pairs [(sy,¢;), (83.¢) . ..])
3 surm —)

! cnf o«)

'- for all pair (s.¢) € pairs :(n.r 1). (s2.03). do

“ 14115 SUHIT 4 N

T end e cnt 4

- EMUr(string 1, pair (sume, cnt))

1: class REDUCER

2 method REDUCE(string £, pairs |(s;.¢1). (s2.¢2)...])
4 sum «—)

| cnt — ()

, for all pair (s.c) € pairs [(s;.¢;).(82.)...] do
& S - SUITE 4 8

7 Cnl s il 4 ¢

o) Vawg *— Stunjocnl

0 EMiT(string £, pair (rg.,, cnt))

Fixed?

Computing the Mean: Version 4

1: class MAPPER

2 method INITIALIZE

; S« new ASSOCIATIVEARRAY

: ("« new ASSOCIATIVEARRAY

P method Map(string £, integer r)

6 S{t} — S{t}+1

7 C{t} — C{t} +1

= method CrLos

0 for all term t = S do

10 EmMir{term f. pair (S{t}.C{1}))

Are combiners still needed?

Algorithm Design: Running Example

o Term co-occurrence matrix for a text collection

e M =N x N matrix (N = vocabulary size)

e M;: number of times / and j co-occur in some context
(for concreteness, let's say context = sentence)

o Why?

e Distributional profiles as a way of measuring semantic distance
e Semantic distance useful for many language processing tasks

MapReduce: Large Counting Problems

o Term co-occurrence matrix for a text collection
= specific instance of a large counting problem

e A large event space (number of terms)
e A large number of observations (the collection itself)
e Goal: keep track of interesting statistics about the events

o Basic approach

e Mappers generate partial counts
e Reducers aggregate partial counts

How do we aggregate partial counts efficiently?

First Try: “Pairs”

o Each mapper takes a sentence:

e Generate all co-occurring term pairs
e For all pairs, emit (a, b) — count

o Reducers sum up counts associated with these pairs

o Use combiners!

Pairs: Pseudo-Code

1: class MAPPER

2 method Mav(docid a, doc o)

3 for all term o € doc o do

i for all term « £ NEIGHBORS() do

b EMIT -(p.':il' (v, i), count 1) > Emit count for each co-occurrence

1: class REDUCER

2 method REDUCE(pair p, counts [¢).¢z2,...])

i e L

| for all count ¢ € counts [4',,«_.. ol do

b Ne— S+ I Suin Co-occurrence counts

6 ExMir(pair p. count s)

“Pairs” Analysis

o Advantages

e Easy to implement, easy to understand

o Disadvantages

e Lots of pairs to sort and shuffle around (upper bound?)
e Not many opportunities for combiners to work

Another Try: “Stripes”

o ldea: group together pairs into an associative array
(a, b) —> 1

)
)— 5 a—{b:1,c:2,d:5e:3,f.2}
)

o Each mapper takes a sentence:

e Generate all co-occurring term pairs
e For each term, emit a — { b: count,, c: count,, d: county ... }

o Reducers perform element-wise sum of associative arrays

(e
a—{b:1, d:5,e:3} ‘2 ctruct
+ a—o{b1,c2d2 f2) Jcted 82
a—{b:2c2d:7,e:3 2} \’\\J_coﬁs’ﬁ“a\ (es““
G\e\'e \-\eT pa‘
weY: 4o el
-« \OS
i 9

Stripes: Pseudo-Code

1 class MArrenr

2: method Mar({docid «. doc d)
3: for all term v € doc d do
i H « new ASSOCIATIVEARRAY
for all term u € NEIGHBORS(w) do
6: H{u} « H{u} +1 > Tally words co-occurring with w
7: Exirr{Term w, Stripe H)
1 class REDUCER
2: method REDUCE(term w, ht!'i[)t'h [fl‘ » [l;. Hs. ..])
3: Hy «— new ASSOCIATIVEARRAY
i: for all stripe H & stripes [H,,. H;. Hs. ..] do
S: SUM(H ;. H) Element-wise sum

6 Eanr(term w, stripe Hy)

“Stripes” Analysis

o Advantages

e Far less sorting and shuffling of key-value pairs
e Can make better use of combiners

o Disadvantages

e More difficult to implement
e Underlying object more heavyweight
e Fundamental limitation in terms of size of event space

Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices

4000 T T !
“stnpas”approach =

“‘pars”" approach o
3500 =

running time (seconds)
§
o
| |
\

|

R =0869 g}

/

! ! _,_,—-'-——-__'"-F- -
e

0 L L 1
0 20 40 60
percentage of the APW corpus

Cluster size: 38 cores
Data Source: Associated Press Worldstream (APW) of the English Gigaword Corpus (v3),
which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)

running time (seconds)

S000

4000

3000

2000

1000

1x

Effect of cluster size on "stripes" algorithm

relative size of EC2 cluster
s 3x

ax

]]

1 | 1 ! !

10

20

30 40 50 &0 70
size of EC2 cluster (number of slave instances)

30

dx

4
relative speedup

W

Relative Frequencies

o How do we estimate relative frequencies from counts?

count(4,B) count(4,B)
count(A) 2 count(A4,B')

B

J(B]A4)=

o Why do we want to do this?

o How do we do this with MapReduce?

f(B|A): “Stripes”
a— {b:3,b,:12,b;:7,b,:1, ... }

o Easy!

e One pass to compute (a, *)
e Another pass to directly compute f(B|A)

f(B|A): “Pairs”

a, *) > 32 Reducer holds this value in memory

(

(a,by) — 3 (a, by) > 3/32
(a, by) — 12 (a, b)) — 12/ 32
(a, bg) > 7 (a, by) > 7/32
(a, by) — 1 (a, b,) » 1/32

o For this to work:

e Must emit extra (a, *) for every b, in mapper

e Must make sure all a’s get sent to same reducer (use partitioner)
e Must make sure (a, *) comes first (define sort order)

e Must hold state in reducer across different key-value pairs

“Order Inversion”

o Common design pattern

e Computing relative frequencies requires marginal counts
e But marginal cannot be computed until you see all counts
e Buffering is a bad idea!
e Trick: getting the marginal counts to arrive at the reducer before
the joint counts
o Optimizations
e Apply in-memory combining pattern to accumulate marginal counts
e Should we apply combiners?

Order Inversion for Bigrams
GO .,3|c labs Books Ngram Viewer

Graph thess Case-sansitive comma-separaod phrases soviet unon
botwoen 1800 nd 2000 from the COffus Englah o Wi amocthing of | 3 84

X Seareh s of Dooks

N-Gram Probability

o Given the phrase ,| pity the®, what is the the probability of
the next word being ,fool*?

o Requires counting up the number of times ,,| pity the fool"
appears in the corpus and dividing by the number of times
.| pity the® appears.

o Useful for spelling correction, machine translation, speech
recognition

o When N=2, bigrams

Digging In: Bigram Example

o Run the program:

e hadoop jar cloud9.jar edu.umd.cloud9.example.bigram.BigramRelativeFrequency
/tmp/wiki /umd-lin/jbg/output/bigram 15

o Take alook at the ouput:

e Hadoop jar cloud9.jar edu.umd.cloud9.example.bigram.AnalyzeBigramRelativeFrequency /
umd-lin/jbg/output/bigram

o Definition

e Mapper<LongWritable, Text, PairOfStrings, FloatWritable>
e Reducer<PairOfStrings, FloatWritable, PairOfStrings, FloatWritable>

Digging In: Bigram Mapper

public void map(LongWritable key, Text value, Context context) {

String line = value.toString();

String prev = null;

StringTokenizer itr = new StringTokenizer(line);

while (itr.hasMoreTokens()) {
String cur = itr.nextToken();
if (prev == null) continue;
bigram.set(prev, cur);
context.write(bigram, one);
bigram.set(prev, "*");
context.write(bigram, one);

}

prev = cur;

Digging In: Bigram Reducer

public void reduce(PairOfStrings key, Iterable<FloatWritable> values, Context context) {
float sum = 0.0f;
Iterator<FloatWritable> iter = values.iterator();
while (iter.nasNext()) sum += iter.next().get();
if (key.getRightElement().equals("*")) {
value.set(sum);
marginal = sum;
} else {
value.set(sum / marginal);

context.write(key, value);

Synchronization: Pairs vs. Stripes

o Approach 1: turn synchronization into an ordering problem

e Sort keys into correct order of computation

e Partition key space so that each reducer gets the appropriate set
of partial results

e Hold state in reducer across multiple key-value pairs to perform
computation

e lllustrated by the “pairs” approach

o Approach 2: construct data structures that bring partial
results together

e Each reducer receives all the data it needs to complete the
computation

e lllustrated by the “stripes” approach

Digging In: Pairs
o Datatype:

e import edu.umd.cloud9.io0.PairOfStrings

o Definitions:

Reducer<PairOfStrings, IntWritable, PairOfStrings, IntWritable>
Mapper<LongWritable, Text, PairOfStrings, IntWritable>

o Mapper

public void map(LongWritable key, Text line, Context context) {
String[] terms = line.toString().split("\\s+");
for (inti=0; i < terms.length; i++) {
String term = termsJi];
for (intj =i - window; j <i + window + 1; j++) {
I/l OMITTED: Check to make sure valid pair
pair.set(term, termsf[j]);
context.write(pair, one);

i

Digging In: Pairs

o Reducer
public void reduce(PairOfStrings key, Iterable<IntWritable> values, Context
context) {
Iterator<IntWritable> iter = values.iterator();
int sum = 0;

while (iter.hasNext()) {sum += iter.next().get();}
SumValue.set(sum);

context.write(key, SumValue);

}

Digging In: Stripes

o Datatype:
e import edu.umd.cloud9.io.fastuil.String2IntOpenHashMapWritable;

o Definitions

Mapper<LongWritable, Text, Text, String2IntOpenHashMapWritable>
Reducer<Text, String2IntOpenHashMapWritable, Text,
String2IntOpenHashMapWritable>

o Mapper

map(LongWritable key, Text line, Context context) {

String[] terms = line.toString().split("\\s+");

for (inti = 0; i < terms.length; i++) {
String term = termsJi];
map.clear();
for (intj =i - window; j < i + window + 1; j++) map.put(terms][j], 1);
textKey.set(term);
context.write(textKey, map);

Digging In: Stripes

o Reducer

public void reduce(Text key, Iterable<String2IlntOpenHashMapWritable> values,
Context context) {

Iterator<String2IintOpenHashMapWritable> iter = values.iterator();

String2IintOpenHashMapWritable map = new String2IntOpenHashMapWritable();
while (iter.hasNext()) map.plus(iter.next());
context.write(key, map);

}

Secondary Sorting

o MapReduce sorts input to reducers by key
e Values may be arbitrarily ordered
o What if want to sort value also?

o E.g.,k—(vq, 1) (V3 1), (Vg T), (Vg, I)...

Secondary Sorting: Solutions

o Solution 1;

e Buffer values in memory, then sort
e Why is this a bad idea?

o Solution 2:
e “Value-to-key conversion” design pattern: form composite
intermediate key, (k, v,)
e Let execution framework do the sorting

e Preserve state across multiple key-value pairs to handle
processing

e Anything else we need to do?

Recap: Tools for Synchronization

o Cleverly-constructed data structures
e Bring data together

o Sort order of intermediate keys

e Control order in which reducers process keys

o Partitioner

e Control which reducer processes which keys

o Preserving state in mappers and reducers

e Capture dependencies across multiple keys and values

Issues and Tradeoffs

o Number of key-value pairs

e Object creation overhead
e Time for sorting and shuffling pairs across the network

o Size of each key-value pair

e De/serialization overhead

o Local aggregation

e Opportunities to perform local aggregation varies
e Combiners make a big difference

e Combiners vs. in-mapper combining

e RAM vs. disk vs. network

Debugging at Scale

o Works on small datasets, won’t scale... why?

e Memory management issues (buffering and object creation)
e Too much intermediate data

e Mangled input records
o Real-world data is messy!

e Word count: how many unique words in Wikipedia?
e There’s no such thing as “consistent data”
e Watch out for corner cases

e Isolate unexpected behavior, bring local

O ,-J‘- =2

Questions?

W RN,

o

B

——

- -
Tl e T
Pt . vy pur

AP — s .

-) W e -

NS el
-

N,

el S
o R B . o

P e L

Source: Wikipedia (Japanese rock garden)

