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Issues from Last Class

o Everybody has access to the cluster?
o Hardware Sorting

o Names

e Ying : Jordan Boyd-Graber
e Ychen126: Yingying Chen

o Input in Hadoop
o What is a node?

o Equal time: Avro



Input Types

o Recall: FileSplits (split), InputFormat (parse),
RecordReader (iterate)

o InputFormat Options

e TextlnputFormat (offset, line text)
e StreamlnputFormat

« Use StreamXmlRecordReader if values are XML documents
e KeyValueTextinputFormat (key, line text)

+ Settable delimiter (tab is default)
e SequenceFilelnputFormat (key, binary)

« Use for binary / serialized input
e MapkFile

-+ Just like SequenceFile, but sorted (key must be comparable)
e Other: HBase, conventional databases



What is a node?

o Not always 1 node per {computer, core}

o In many cases, nodes are virtual machines running in
nodes (e.g. WorldLingo)

o How many nodes per machine depends on typical usage
(e.g. IO vs CPU)



Avro

o Much like protocol buffers
o Uses JSON to compile schema

o Newer, but better connected with Hadoop

e Could have better integration, but not there yet

o Benifits compared to protocol buffers

e Schema is transmitted with serialization
e Does not require compiling code

o Limitations compared to protocol buffers

e Schema is transmitted with serialization
e Cannot have nested fields
e Cannot have null fields

o Again, not required to use them



Today’s Agenda

o “The datacenter is the computer”

e Understanding the design of warehouse-sized computes

o MapReduce algorithm design

e How do you express everything in terms of m, r, c, p?
e Toward “design patterns”



The datacenter is the computer



“Big Ideas”

o Scale “out”, not “up”
e Limits of SMP and large shared-memory machines
o Move processing to the data
e Cluster have limited bandwidth
o Process data sequentially, avoid random access

e Seeks are expensive, disk throughput is reasonable

o Seamless scalability

e From the mythical man-month to the tradable machine-hour



Source: NY Times (6/14/2006)






Source: Bonneville Power Administration




Building Blocks

Source: Barroso and Urs Hélzle (2009)



Storage Hierarchy

One server

DRAM: 16GB, 100ns, 20GB/s
Disk: 278, 10ms, 200MB/s

Local rack (80 servers)

ORAM: 178, 300us, 100MB/s
Disk: 160TB, 11ms, 100MB/s

Cluster (30 racks)

DRAM: 3078, 500us. 10MB/s
Disk: 4.80PB, 12ms, 10MB/s

Source: Barroso and Urs Hélzle (2009)



Storage Hierarchy
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Source: Barroso and Urs Hélzle (2009)



Anatomy of a Datacenter
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Why commodity machines?

HP INTEGRITY HP PROLIANT
SUPERDOME-ITANIUM2 MIL.350 GS
Processor 64 sockets, 128 cores 1 socket, quad-core,
(dual-threaded), 1.6 GHz 2.66 GHz X5355 CPU,
Itanium?2, 12 MB 8 MB last-level cache
last-Jevel cache
Memory 2048 GB 24 GB
Disk storage 320,974 GB, 7,056 drives 3,961 GB, 105 drives
TPC-C pr'xc."]\crfonu;mcc $2.953/tpmC $0.73/ lme
price/performance $1. 28/ ransactions $0. 10/ ransactions
(server HW only) per minute per minute
Price/performance $2.39/transactions $0.12/transactions
(server HW only) per minute per minute
(no discounts)

Source: Barroso and Urs Holzle (2009); performance figures from late 2007



Why commodity machines?

o Diminishing returns for high-end machines
o Power usage is lower for mid-range machines

o If you're doing it right, many processes are memory

Source: Barroso and Urs Holzle (2009); performance figures from late 2007



What about communication?

o Nodes need to talk to each other!

e SMP: latencies ~100 ns
e LAN: latencies ~100 us

o Scaling “up” vs. scaling “out”

e Smaller cluster of SMP machines vs. larger cluster of commodity
machines

e E.g., 8 128-core machines vs. 128 8-core machines
e Note: no single SMP machine is big enough

o Let’'s model communication overhead...

Source: analysis on this an subsequent slides from Barroso and Urs Hoélzle (2009)



Modeling Communication Costs

o Simple execution cost model:

e Total cost = cost of computation + cost to access global data
e Fraction of local access inversely proportional to size of cluster
e n nodes (ignore cores for now)

1ms+fx[100ns x n+ 100 us x (1 - 1/n)]

* Light communication: f =1
* Medium communication: f=10
- Heavy communication: f=100

o What are the costs in parallelization?



Cost of Parallelization
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Advantages of scaling “up”

So why not?
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Seeks vs. Scans

o Consider a 1 TB database with 100 byte records

e \We want to update 1 percent of the records

o Scenario 1: random access

e Each update takes ~30 ms (seek, read, write)
e 108 updates = ~35 days

o Scenario 2: rewrite all records

e Assume 100 MB/s throughput
e Time = 5.6 hours(!)

o Lesson: avoid random seeks!

Source: Ted Dunning, on Hadoop mailing list



Justifying the “Big Ideas”

o Scale “out”, not “up”
e Limits of SMP and large shared-memory machines
o Move processing to the data
e Cluster have limited bandwidth
o Process data sequentially, avoid random access

e Seeks are expensive, disk throughput is reasonable

o Seamless scalability

e From the mythical man-month to the tradable machine-hour



L1 cache reference

Branch mispredict

L2 cache reference

Mutex lock/unlock

Main memory reference

Send 2K bytes over 1 Gbps network
Read 1 MB sequentially from memory
Round trip within same datacenter
Disk seek

Read 1 MB sequentially from disk
Send packet CA — Netherlands — CA

* According to Jeff Dean (LADIS 2009 keynote)

Numbers Everyone Should Know*

0.5ns

S5 ns

7 ns

25 ns

100 ns

20,000 ns
250,000 ns
500,000 ns
10,000,000 ns
20,000,000 ns
150,000,000 ns



MapReduce Algorithm Design



MapReduce: Recap

o Programmers must specify:
map (k, v) — <k’, v’>*
reduce (k’, v') — <k’, v'>*
e All values with the same key are reduced together

o Optionally, also:

partition (k’, number of partitions) — partition for k’

e Often a simple hash of the key, e.g., hash(k’) mod n

e Divides up key space for parallel reduce operations
combine (k’, V') — <k’, v’>*

e Mini-reducers that run in memory after the map phase
e Used as an optimization to reduce network traffic

o The execution framework handles everything else...
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“Everything Else”

o The execution framework handles everything else...

e Scheduling: assigns workers to map and reduce tasks

e “Data distribution”. moves processes to data

e Synchronization: gathers, sorts, and shuffles intermediate data
e Errors and faults: detects worker failures and restarts

o Limited control over data and execution flow

e All algorithms must expressed inm, r, c, p

o You don’t know:

e \Where mappers and reducers run

e When a mapper or reducer begins or finishes

e Which input a particular mapper is processing

e Which intermediate key a particular reducer is processing



Tools for Synchronization

o Cleverly-constructed data structures

e Bring partial results together
o Sort order of intermediate keys

e Control order in which reducers process keys

o Partitioner

e Control which reducer processes which keys

o Preserving state in mappers and reducers

e Capture dependencies across multiple keys and values



Preserving State

Mapper object
> state
/
/
/
I configure
|
|
|
\
\ map
close

<€— one object per task —>

€—— APl initialization hook =————>

<€ one call per in
key-value pair

€ APl clean

put

one call per ———>
intermediate key

up hook >

Reducer object

state -

configure

reduce

close



Scalable Hadoop Algorithms: Themes

o Avoid object creation

e Inherently costly operation
e Garbage collection

o Avoid buffering

e Limited heap size
e \Works for small datasets, but won’t scale!



Importance of Local Aggregation

o ldeal scaling characteristics:

e Twice the data, twice the running time
e Twice the resources, half the running time

o Why can’t we achieve this?

e Synchronization requires communication
e Communication kills performance

o Thus... avoid communication!

e Reduce intermediate data via local aggregation
e Combiners can help



Shuffle and Sort

Mapper intermediate files
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Word Count: Baseline

1: class MAPPER

method Mari(docid a. doc o)
3 for all term ¢ € doe d do
| EsMir{term ¢, count 1)

1: class REDUCER

method REDUCE(term £, counts ¢y, ¢,

3 S - U

| for all count ¢ € counts [cy. ;... ] do
S SUTTE 4 ¢

t EsMir(tern ¢, count s)

What’s the impact of combiners?



Word Count: Version 1

1: class MAPPER
method Map(docid a. doc d)

3: H — new ASSOCIATIVEARRAY

I: for all term f € doc d do

5: H{t} — H{t} +1 - Tally counts for entire document
6: for all term t & H do

T Easir(term , count H{t})

Are combiners still needed?



Word Count: Version 2

S

1: class MAPPER ac‘os
2 method INITIALIZE g\a“e \

e S
3: H « new ASSOCIATIVEARRAY se“’ 2

e
! method Mav(docid a. doc d) \ke\J 9 ‘J' N
5 for all term f € doe d do 9 we
' Hi{t} — H{t} +1 w > Tally counts across documents

method Crosg
for all term t € H do
o ExiT(term t,count H{¢})

x

Are combiners still needed?



Design Pattern for Local Aggregation

o “In-mapper combining”

e Fold the functionality of the combiner into the mapper by
preserving state across multiple map calls

o Advantages

e Speed
e Why is this faster than actual combiners?

o Disadvantages

e Explicit memory management required
e Potential for order-dependent bugs



Combiner Design

o Combiners and reducers share same method signature

e Sometimes, reducers can serve as combiners
e Often, not...

o Remember: combiner are optional optimizations

e Should not affect algorithm correctness
e May be run 0, 1, or multiple times

o Example: find average of all integers associated with the
same key



Computing the Mean: Version 1

1: class MAPPER
method Map(string f, integer r)

Esrr(st ring ¢, wteger r)

1: class REDUCER

method ReEpuod l.\f!'ill',: I, iltft-f.',o':h [' ETEE |
surm — U
| 7l i)
for all integer r € integers [ry.ra....] do
t ~ ) sSien ™ )
T cntl — cnt + I
o Vavg = SUIn nt
0 Easrr(string ¢, integer r,, )

Why can’t we use reducer as combiner?



Computing the Mean: Version 2

1: class MAPPER
2 method Map(string £, integer r)

.

Ensir(string f, integer r)

1- class COMBINER

2 method COMBINE(string {. integers [ry, rs....])

3 surm ()

1 cnt «— U

h for all integer r € integers |[ry.ry... .| do

O SN ~~ S <+ 1

T ent «— ent 41

8 Exsir(string ¢, pair (sum.cnt)) > Separate sum and count
1: class REDUVCER

2 method REDUCE(string 1, pairs [(5y, ¢y), (82.02)...])
3 sum — U

| cnt — 1)

b for all pair (s.c¢) € pairs !Is, cy ) (=2.02) ., [ do
O SN = NUImt S5

T ent — ont + ¢

n Favg *= surm/cnt

0 EMiT(string f. integer ry,.,)

Why doesn’t this work?



Computing the Mean: Version 3

1: class MAPPER
2 method Map(string /. integer r)
3 EMir(string f, pair (r, 1))

1: clasg COMBINER

2 method CoMBINE(string £, pairs [(sy,¢;), (83.¢) . ..])
3 surm — )

! cnf o« )

'- for all pair (s.¢) € pairs :(n.r 1 ). (s2.03). do

“ 14115 SUHIT 4 N

T end e cnt 4

- EMUr(string 1, pair (sume, cnt))

1: class REDUCER

2 method REDUCE(string £, pairs |(s;.¢1). (s2.¢2)...])
4 sum «— )

| cnt — ()

, for all pair (s.c) € pairs [(s;.¢;).(82.)...] do
& S - SUITE 4 8

7 Cnl s il 4 ¢

o) Vawg *— Stunjocnl

0 EMiT(string £, pair (rg.,, cnt))

Fixed?



Computing the Mean: Version 4

1: class MAPPER

2 method INITIALIZE

; S« new ASSOCIATIVEARRAY

: ("« new ASSOCIATIVEARRAY

P method Map(string £, integer r)

6 S{t} — S{t}+1

7 C{t} — C{t} +1

= method CrLos

0 for all term t = S do

10 EmMir{term f. pair (S{t}.C{1}))

Are combiners still needed?



Algorithm Design: Running Example

o Term co-occurrence matrix for a text collection

e M =N x N matrix (N = vocabulary size)

e M;: number of times / and j co-occur in some context
(for concreteness, let's say context = sentence)

o Why?

e Distributional profiles as a way of measuring semantic distance
e Semantic distance useful for many language processing tasks



MapReduce: Large Counting Problems

o Term co-occurrence matrix for a text collection
= specific instance of a large counting problem

e A large event space (number of terms)
e A large number of observations (the collection itself)
e Goal: keep track of interesting statistics about the events

o Basic approach

e Mappers generate partial counts
e Reducers aggregate partial counts

How do we aggregate partial counts efficiently?



First Try: “Pairs”

o Each mapper takes a sentence:

e Generate all co-occurring term pairs
e For all pairs, emit (a, b) — count

o Reducers sum up counts associated with these pairs

o Use combiners!



Pairs: Pseudo-Code

1: class MAPPER

2 method Mav(docid a, doc o)

3 for all term o € doc o do

i for all term « £ NEIGHBORS( ) do

b EMIT -(p.':il' (v, i), count 1) > Emit count for each co-occurrence

1: class REDUCER

2 method REDUCE(pair p, counts [¢).¢z2,...])

i e L

| for all count ¢ € counts [4',,«_.. ol do

b Ne— S+ I Suin Co-occurrence counts

6 ExMir(pair p. count s)



“Pairs” Analysis

o Advantages

e Easy to implement, easy to understand

o Disadvantages

e Lots of pairs to sort and shuffle around (upper bound?)
e Not many opportunities for combiners to work



Another Try: “Stripes”

o ldea: group together pairs into an associative array
(a, b) —> 1

)
)— 5 a—{b:1,c:2,d:5e:3,f.2}
)

o Each mapper takes a sentence:

e Generate all co-occurring term pairs
e For each term, emit a — { b: count,, c: count,, d: county ... }

o Reducers perform element-wise sum of associative arrays

(e
a—{b:1, d:5,e:3} ‘2 ctruct
+ a—o{b1,c2d2  f2) Jcted 82
a—{b:2c2d:7,e:3 2} \’\\J_coﬁs’ﬁ“a\ (es““
G\e\'e \-\eT pa‘
weY: 4o el
-« \OS
i 9



Stripes: Pseudo-Code

1 class MArrenr

2: method Mar({docid «. doc d)
3: for all term v € doc d do
i H « new ASSOCIATIVEARRAY
for all term u € NEIGHBORS(w) do
6: H{u} « H{u} +1 > Tally words co-occurring with w
7: Exirr{Term w, Stripe H)
1 class REDUCER
2: method REDUCE(term w, ht!'i[)t'h [fl‘ » [l;. Hs. .. ] )
3: Hy «— new ASSOCIATIVEARRAY
i: for all stripe H & stripes [H,,. H;. Hs. .. ] do
S: SUM(H ;. H)  Element-wise sum

6 Eanr(term w, stripe Hy)



“Stripes” Analysis

o Advantages

e Far less sorting and shuffling of key-value pairs
e Can make better use of combiners

o Disadvantages

e More difficult to implement
e Underlying object more heavyweight
e Fundamental limitation in terms of size of event space



Comparison of "pairs" vs. "stripes" for computing word co-occurrence matrices
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which contains 2.27 million documents (1.8 GB compressed, 5.7 GB uncompressed)
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Relative Frequencies

o How do we estimate relative frequencies from counts?

count(4,B)  count(4,B)
count(A) 2 count(A4,B')

B

J(B]A4)=

o Why do we want to do this?

o How do we do this with MapReduce?



f(B|A): “Stripes”
a— {b:3,b,:12,b;:7,b,:1, ... }

o Easy!

e One pass to compute (a, *)
e Another pass to directly compute f(B|A)



f(B|A): “Pairs”

a, *) > 32  Reducer holds this value in memory

(

(a,by) — 3 (a, by) > 3/32
(a, by) — 12 (a, b)) — 12/ 32
(a, bg) > 7 (a, by) > 7/32
(a, by) — 1 (a, b,) » 1/32

o For this to work:

e Must emit extra (a, *) for every b, in mapper

e Must make sure all a’s get sent to same reducer (use partitioner)
e Must make sure (a, *) comes first (define sort order)

e Must hold state in reducer across different key-value pairs



“Order Inversion”

o Common design pattern

e Computing relative frequencies requires marginal counts
e But marginal cannot be computed until you see all counts
e Buffering is a bad idea!
e Trick: getting the marginal counts to arrive at the reducer before
the joint counts
o Optimizations
e Apply in-memory combining pattern to accumulate marginal counts
e Should we apply combiners?



Order Inversion for Bigrams
GO .,3|c labs  Books Ngram Viewer
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N-Gram Probability

o Given the phrase ,| pity the®, what is the the probability of
the next word being ,fool*?

o Requires counting up the number of times ,,| pity the fool"
appears in the corpus and dividing by the number of times
.| pity the® appears.

o Useful for spelling correction, machine translation, speech
recognition

o When N=2, bigrams



Digging In: Bigram Example

o Run the program:

e hadoop jar cloud9.jar edu.umd.cloud9.example.bigram.BigramRelativeFrequency
/tmp/wiki /umd-lin/jbg/output/bigram 15

o Take alook at the ouput:

e Hadoop jar cloud9.jar edu.umd.cloud9.example.bigram.AnalyzeBigramRelativeFrequency /
umd-lin/jbg/output/bigram

o Definition

e Mapper<LongWritable, Text, PairOfStrings, FloatWritable>
e Reducer<PairOfStrings, FloatWritable, PairOfStrings, FloatWritable>



Digging In: Bigram Mapper

public void map(LongWritable key, Text value, Context context) {

String line = value.toString();

String prev = null;

StringTokenizer itr = new StringTokenizer(line);

while (itr.hasMoreTokens()) {
String cur = itr.nextToken();
if (prev == null) continue;
bigram.set(prev, cur);
context.write(bigram, one);
bigram.set(prev, "*");
context.write(bigram, one);

}

prev = cur;



Digging In: Bigram Reducer

public void reduce(PairOfStrings key, Iterable<FloatWritable> values, Context context) {
float sum = 0.0f;
Iterator<FloatWritable> iter = values.iterator();
while (iter.nasNext()) sum += iter.next().get();
if (key.getRightElement().equals("*")) {
value.set(sum);
marginal = sum;
} else {
value.set(sum / marginal);

context.write(key, value);



Synchronization: Pairs vs. Stripes

o Approach 1: turn synchronization into an ordering problem

e Sort keys into correct order of computation

e Partition key space so that each reducer gets the appropriate set
of partial results

e Hold state in reducer across multiple key-value pairs to perform
computation

e lllustrated by the “pairs” approach

o Approach 2: construct data structures that bring partial
results together

e Each reducer receives all the data it needs to complete the
computation

e lllustrated by the “stripes” approach



Digging In: Pairs
o Datatype:

e import edu.umd.cloud9.io0.PairOfStrings

o Definitions:

Reducer<PairOfStrings, IntWritable, PairOfStrings, IntWritable>
Mapper<LongWritable, Text, PairOfStrings, IntWritable>

o Mapper

public void map(LongWritable key, Text line, Context context) {
String[] terms = line.toString().split("\\s+");
for (inti=0; i < terms.length; i++) {
String term = termsJi];
for (intj =i - window; j <i + window + 1; j++) {
I/l OMITTED: Check to make sure valid pair
pair.set(term, termsf[j]);
context.write(pair, one);

i



Digging In: Pairs

o Reducer
public void reduce(PairOfStrings key, Iterable<IntWritable> values, Context
context) {
Iterator<IntWritable> iter = values.iterator();
int sum = 0;

while (iter.hasNext()) {sum += iter.next().get();}
SumValue.set(sum);

context.write(key, SumValue);

}



Digging In: Stripes

o Datatype:
e import edu.umd.cloud9.io.fastuil.String2IntOpenHashMapWritable;

o Definitions

Mapper<LongWritable, Text, Text, String2IntOpenHashMapWritable>
Reducer<Text, String2IntOpenHashMapWritable, Text,
String2IntOpenHashMapWritable>

o Mapper

map(LongWritable key, Text line, Context context) {

String[] terms = line.toString().split("\\s+");

for (inti = 0; i < terms.length; i++) {
String term = termsJi];
map.clear();
for (intj =i - window; j < i + window + 1; j++) map.put(terms][j], 1);
textKey.set(term);
context.write(textKey, map);



Digging In: Stripes

o Reducer

public void reduce(Text key, Iterable<String2IlntOpenHashMapWritable> values,
Context context) {

Iterator<String2IintOpenHashMapWritable> iter = values.iterator();

String2IintOpenHashMapWritable map = new String2IntOpenHashMapWritable();
while (iter.hasNext()) map.plus(iter.next());
context.write(key, map);

}



Secondary Sorting

o MapReduce sorts input to reducers by key
e Values may be arbitrarily ordered
o What if want to sort value also?

o E.g.,k—(vq, 1) (V3 1), (Vg T), (Vg, I)...



Secondary Sorting: Solutions

o Solution 1;

e Buffer values in memory, then sort
e Why is this a bad idea?

o Solution 2:
e “Value-to-key conversion” design pattern: form composite
intermediate key, (k, v,)
e Let execution framework do the sorting

e Preserve state across multiple key-value pairs to handle
processing

e Anything else we need to do?



Recap: Tools for Synchronization

o Cleverly-constructed data structures
e Bring data together

o Sort order of intermediate keys

e Control order in which reducers process keys

o Partitioner

e Control which reducer processes which keys

o Preserving state in mappers and reducers

e Capture dependencies across multiple keys and values



Issues and Tradeoffs

o Number of key-value pairs

e Object creation overhead
e Time for sorting and shuffling pairs across the network

o Size of each key-value pair

e De/serialization overhead

o Local aggregation

e Opportunities to perform local aggregation varies
e Combiners make a big difference

e Combiners vs. in-mapper combining

e RAM vs. disk vs. network



Debugging at Scale

o Works on small datasets, won’t scale... why?

e Memory management issues (buffering and object creation)
e Too much intermediate data

e Mangled input records
o Real-world data is messy!

e Word count: how many unique words in Wikipedia?
e There’s no such thing as “consistent data”
e Watch out for corner cases

e Isolate unexpected behavior, bring local
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Source: Wikipedia (Japanese rock garden)




