Data-Intensive Information Processing Applications — Session #2

Hadoop: Nuts and Bolts

s Jordan Boyd-Graber

g 4O . _
.f@/ . University of Maryland
AN )Y /)
/{x\_r{\“\‘

d
Tuesday, February 10, 2011

‘@ @@@| This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details



Last Class

o Registration

o Sign up for mailing list

o Complete usage agreement (so you get on the cluster)
o Notecards

e Difficult class
e Real-world examples

o How to sort a list of numbers



Naive Way to Sort Numbers

o Mapper: Identity Mapper (just emit everything)

o Reducer: Output everything

o Postprocess: Merge results (why?)

1 = 4 a5 @mg =
2 - c; 4m3;; Gmgzy 4
97 @& 79 am 33 @m 3462

1]2)afofisfas]esfra]




Better Way to Sort Numbers

o Assume K reducers

o Sample small fraction of data to guess at K evenly spaced
numbers (p'l, p2s p3’ p4a pK-1)

o Create new partitioner(x)

e X <p,:reducer 1
® p;<=X<p,4: reduceri
® py <=x:reducer K

o Concatenate output
o Sorted 1TB of data in 209 seconds (first OSS / Java win)



This class: Hadoop Programs

o Configuring / Setting up Jobs
o Representing Data
o What happens underneath

o How to write / test / debug Hadoop programs



Hadoop Programming

o Remember “strong Java programming” as pre-requisite?

o But this course is not about programming!

e Focus on “thinking at scale” and algorithm design

e We'll expect you to pick up Hadoop (quickly) along the way
o How do | learn Hadoop?

e This session: brief overview
e White's book
e RTFM, RTFC(!)



Source: Wikipedia (Mahout)




Basic Hadoop API
o Mapper

e void map(K1 key, V1 value, Context context)
e context.write(k, v) — Used to emit intermediate results

o Reducer/Combiner

e void reduce(K2 key, Iterable<V2> values, Context context)
e context.write(k, v) — Used to emit results

o Partitioner

e int getPartition(K2 key, V2 value, int numPartitions)
e Returns the partition assignment

o Job / Configuration

e Specifies the mappers / reducers / combiners / partitioners
e Sets options (command line or from XML)



Data Types in Hadoop

Writable

|

WritableComprable

!

IntWritable
LongWritable
Text

SequenceFiles

Defines a de/serialization protocol.
Every data type in Hadoop is a Writable.

Defines a sort order. All keys must be
of this type (but not values).

Concrete classes for different data types.

Binary encoding of a sequence of key/
value pairs



Where Can | Find Writables?

o Hadoop

o Cloud9: edu.umd.cloud9.io

e Arrays

e HashMap
e Pairs

e Tuples

l"ol"'-' J . 'l‘ "o?od'o'-' > '.:'f..‘" : l‘ln-l o

Java prinfawve
boolean

yte

Wrtadie npleneatytion

Jooleardiritable
dyteblritable
Intkritaale
VIstNritadle
Floathritable
LongMritable

Longhritable

v Lava prosmifew

Senaired ude (bytes)
!

i

4



““Hello World”: Word Count

Map(String docid, String text):
for each word w in text:
Emit(w, 1);

Reduce(String term, Iterator<int> values):
int sum = 0;
for each v in values:
sum +=v;
Emit(term, value);



Three Gotchas

o Avoid object creation, at all costs
o Execution framework reuses value in reducer (Clone)

o Passing parameters into mappers and reducers

e DistributedCache for larger (static) data
e Configuration object for smaller parameters (unit tests?)



Complex Data Types in Hadoop

o How do you implement complex data types?

o The easiest way:

e Encoded it as Text, e.g., (a, b) = “a:b”
e Use regular expressions to parse and extract data
e Works, but pretty hack-ish

o The hard way:

e Define a custom implementation of WritableComprable
e Must implement: readFields, write, compareTo, hashCode
e Computationally efficient, but slow for rapid prototyping

o Alternatives:

e Cloud? offers two other choices: Tuple and JSON
e (Actually, not that useful in practice)
e Google: Protocol Buffers



Protocol Buffers

o Developed by Google
o Now open source
o Arbitrary data types

o Compiled into language of your choice

e Python

o C++

e Java

e (Other languages by folks outside of Google)

o Data are represented by compact byte streams



Why use Protocol Buffers

o Ad hoc data types are under-specified

e 10.2010

* |s it a date?
* A number?
* A string?

o Reading in data is often CPU-bound

e Parsing CSV / XML is faster with two CPUs than one
e Note: goes against CS accepted wisdom

o Cross-platform

e OS
e Programming language

o Extensible

o Scales well (Google has multi-gigabyte protocol buffers)



Why not use Protocol Buffers

o Needs libraries to be installed for every language
o One additional thing to compile
o Not human readable

o Needs up front investment to design data structures
(somtimes a good thing)



Protocol Buffers: Source

package tutorial;
Metadata to generate

option java_package = "com.example.tutorial";
Source code

option java_outer_classname = "AddressBookProtos";

_ Name of protocol buffer

Typed data

_ Discrete data

message Person {
required string name = 1;

required int32 id = 2;

optional string email = 3;

enum PhoneType {
MOBILE = 0;
HOME = 1,
WORK = 2;

}

message PhoneNumber { _ Sub-type definition

required string number = 1;

optional PhoneType type = 2 [default = HOME];
}

repeated PhoneNumber phone = 4; _ Sub-type use

}



Protobuffs in your favorite language

o Compile the source into code:

package com.example.tutorial;

public final class AddressBookProtos {

package com.example.tutorial;
public static com.example.tutorial. AddressBookProtos.Person.PhoneNumber

public void writeTo(com.google.protobuf.CodedOutputStream output)
throws java.io.lOException {

getSerializedSize();

if (((bitField0_ & 0x00000001) == 0x00000001)) {
output.writeBytes(1, getNameBytes());

}

if (((bitField0_ & 0x00000002) == 0x00000002)) {
output.writelnt32(2, id_);

}

if (((bitField0_ & 0x00000004) == 0x00000004)) {
output.writeBytes(3, getEmailBytes());

o Get 10, serialization, type checking, and access for free



Steps for writing protcol buffer

o Design data structure

© Complle prOtOCOI buffer: for (Person.PhoneNumber phoneNumber :
protoc addressbook.proto -- person.getPhonelList()) {
java_out=. --cpp_out=. --python_out=. switch (phoneNumber.getType()) {
_ case MOBILE:
o Create source code using System.out.print(" Mobile phone #: ");
break;
protocol buffers cace HOME:
. . System.out.print(" Home phone #: ");
o Compile your code, include bfeak; ( )
PB |ibrary case WORK:
System.out.print(" Work phone #: ");
o Deploy } break;




Protocol Buffers - Moral

o Crossplatform method to store data

o Good support in MapReduce

e Google: All messages assumed to be protocol buffers
e Hadoop: Package called Elephant-Bird (Twitter)

o Use when

e Not in control of the data you get

e Writing in many different programming langauges
e Raw data need not be human readable

e Complex projects

o Welcome and encouraged to use them for class (but not
required)



Source: Wikipedia




Basic Cluster Components

o One of each:
e Namenode (NN)
e Jobtracker (JT)
o Set of each per slave machine:

e Tasktracker (TT)
e Datanode (DN)



Putting everything together...

namenode job submission node

namenode daemon jobtracker

N
tasktracker tasktracker tasktracker

datanode daemon datanode daemon datanode daemon

Linux file system Linux file system Linux file system




Anatomy of a Job

o MapReduce program in Hadoop = Hadoop job

Jobs are divided into map and reduce tasks
An instance of running a task is called a task attempt
Multiple jobs can be composed into a workflow

o Job submission process

Client (i.e., driver program) creates a job, configures it, and
submits it to job tracker

JobClient computes input splits (on client end)

Job data (jar, configuration XML) are sent to JobTracker
JobTracker puts job data in shared location, enqueues tasks
TaskTrackers poll for tasks

Off to the races...



Input File
- InputSplit InputSplit InputSplit
©
E Q Q
|
o
L
=1
o
=
RecordReader RecordReader RecordReader
Mapper Mapper Mapper

l l l

Intermediates Intermediates Intermediates

Source: redrawn from a slide by Cloduera, cc-licensed

Input File

l l

InputSplit InputSplit
RecordReader RecordReader
Mapper Mapper

l l

Intermediates Intermediates



Mapper Mapper Mapper Mapper Mapper

v v v v v
Intermediates Intermediates Intermediates Intermediates Intermediates
\ 4 \ 4 \ 4 \ 4 \ 4
Partitioner Partitioner Partitioner Partitioner Partitioner

(combiners omitted here)

'

Intermediates Intermediates Intermediates
l l \ 4
Reducer Reducer Reduce

Source: redrawn from a slide by Cloduera, cc-licensed



Reducer Reducer Reduce

©
=
[
e
= RecordWriter RecordWriter RecordWriter
S
=]
(@)
Output File Output File Output File

Source: redrawn from a slide by Cloduera, cc-licensed



Input and Output

o InputFormat:

e TextlnputFormat
e KeyValueTextInputFormat
e SequenceFilelnputFormat

o OutputFormat:

e TextOutputFormat
e SequenceFileOutputFormat



Shuffle and Sort in Hadoop
o Probably the most complex aspect of MapReduce!

o Map side
e Map outputs are buffered in memory in a circular buffer
e When buffer reaches threshold, contents are “spilled” to disk

e Spills merged in a single, partitioned file (sorted within each
partition): combiner runs here

o Reduce side

e First, map outputs are copied over to reducer machine

e “Sort”’ is a multi-pass merge of map outputs (happens in memory
and on disk): combiner runs here

e Final merge pass goes directly into reducer



Hadoop Workflow

1. Load data into HDFS

) 2. Develop code locally

3. Submit MapReduce job
3a. Go back to Step 2

H I
You adoop Cluster

4. Retrieve data from HDFS



Debugging Hadoop

o First, take a deep breath
o Start small, start locally
o Unit tests

o Strategies

e Learn to use the webapp

e Where does println go?

e Don'’t use println, use logging
e Throw RuntimeExceptions



Start Small, Local

o Many mappers can be written as an lterable

o Test the iterator locally on known input to make sure the
right intermediates are generated

o Double check using an identity reducer (again, locally)
o Test reducer locally againts lterable output

o Run on cluster on moderate data, debug again



Unit Tests

o Whole courses / books on test-driven design

o Basic Idea

e Write tests of what you expect the code will produce
e Unit test frameworks (like JUnit) run those tests for you
e These tests should always pass! (Eclipse can force you)

o Write tests ASAP

e Catch problems early
e Ensure tests fail
e Modular design to your code (good for many reasons)

o Write new tests for every bug discovered

o Only Jeff Dean, Chuck Norris, and Brian Kernighan write
perfect code



Unit Test Example (HW 2)

@Before

@Test
public void testOneWord() {
List<Pair<PairOfStrings, FloatWritable>> out = null;

try {
out = driver.withinput(new LongWritable(0), new Text("evil::mal")).run();
} catch (IOException ioe) {A'

fail(); Send input to mapper

}

List<Pair<PairOfStrings, FloatWritable>> expected =

new ArrayList<Pair<PairOfStrings, FloatWritable>>();
expected.add(new Pair<PairOfStrings, FloatWritable>

(new PairOfStrings("evil", "mal"), EXPECTED COUNT));
expected.add(new Pair<PairOfStrings, FloatWritable>

(new PairOfStrings("evil", "*"), EXPECTED_COUNT));

assertListEquals(expected, out); Precompute the expected output

Check that they were actually the same



Recap

o Hadoop data types
o Anatomy of a Hadoop job
o Hadoop jobs, end to end

o Software development workflow



O ,-J‘- =2

Questions?

W RN,

o

B

——

- -
Tl e T
Pt . vy pur

AP — s .

- ) W e -

NS el
-

N,

el S
o R B . o

P e L

Source: Wikipedia (Japanese rock garden)




