
Hadoop: Nuts and Bolts
Data-Intensive Information Processing Applications ! Session #2

Jordan Boyd-Graber
University of Maryland

Tuesday, February 10, 2011

This work is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States
See http://creativecommons.org/licenses/by-nc-sa/3.0/us/ for details

Last Class
!  Registration

!  Sign up for mailing list

!  Complete usage agreement (so you get on the cluster)

!  Notecards
"  Difficult class
"  Real-world examples

!  How to sort a list of numbers

Naive Way to Sort Numbers
!  Mapper: Identity Mapper (just emit everything)

!  Reducer: Output everything

!  Postprocess: Merge results (why?)

1 4 15 9
2 65 35 89
97 79 323 8462

1 2 4 9 15 35 65 79 ...

Better Way to Sort Numbers
!  Assume K reducers

!  Sample small fraction of data to guess at K evenly spaced
numbers (p1, p2, p3, p4, ... pK-1)

!  Create new partitioner(x)
"  x < p1: reducer 1
"  pi <= x < pi+1: reducer i
"  pK <= x : reducer K

!  Concatenate output

!  Sorted 1TB of data in 209 seconds (first OSS / Java win)

This class: Hadoop Programs
!  Configuring / Setting up Jobs

!  Representing Data

!  What happens underneath

!  How to write / test / debug Hadoop programs

Hadoop Programming
!  Remember “strong Java programming” as pre-requisite?

!  But this course is not about programming!
"  Focus on “thinking at scale” and algorithm design
"  We’ll expect you to pick up Hadoop (quickly) along the way

!  How do I learn Hadoop?
"  This session: brief overview
"  White’s book
"  RTFM, RTFC(!)

Source: Wikipedia (Mahout)

Basic Hadoop API
!  Mapper

"  void map(K1 key, V1 value, Context context)
"  context.write(k, v) – Used to emit intermediate results

!  Reducer/Combiner
"  void reduce(K2 key, Iterable<V2> values, Context context)
"  context.write(k, v) – Used to emit results

!  Partitioner
"  int getPartition(K2 key, V2 value, int numPartitions)
"  Returns the partition assignment

!  Job / Configuration
"  Specifies the mappers / reducers / combiners / partitioners
"  Sets options (command line or from XML)

Data Types in Hadoop

Writable Defines a de/serialization protocol.
Every data type in Hadoop is a Writable.

WritableComprable Defines a sort order. All keys must be
of this type (but not values).

IntWritable
LongWritable
Text
…

Concrete classes for different data types.

SequenceFiles Binary encoding of a sequence of key/
value pairs

Where Can I Find Writables?
!  Hadoop

!  Cloud9: edu.umd.cloud9.io
"  Arrays
"  HashMap
"  Pairs
"  Tuples

“Hello World”: Word Count

Map(String docid, String text):
 for each word w in text:
 Emit(w, 1);

Reduce(String term, Iterator<Int> values):
 int sum = 0;
 for each v in values:
 sum += v;
 Emit(term, value);

Three Gotchas
!  Avoid object creation, at all costs

!  Execution framework reuses value in reducer (Clone)

!  Passing parameters into mappers and reducers
"  DistributedCache for larger (static) data
"  Configuration object for smaller parameters (unit tests?)

Complex Data Types in Hadoop
!  How do you implement complex data types?

!  The easiest way:
"  Encoded it as Text, e.g., (a, b) = “a:b”
"  Use regular expressions to parse and extract data
"  Works, but pretty hack-ish

!  The hard way:
"  Define a custom implementation of WritableComprable
"  Must implement: readFields, write, compareTo, hashCode
"  Computationally efficient, but slow for rapid prototyping

!  Alternatives:
"  Cloud9 offers two other choices: Tuple and JSON
"  (Actually, not that useful in practice)
"  Google: Protocol Buffers

Protocol Buffers
!  Developed by Google

!  Now open source

!  Arbitrary data types

!  Compiled into language of your choice
"  Python
"  C++
"  Java
"  (Other languages by folks outside of Google)

!  Data are represented by compact byte streams

Why use Protocol Buffers
!  Ad hoc data types are under-specified

"  10.2010
•  Is it a date?
•  A number?
•  A string?

!  Reading in data is often CPU-bound
"  Parsing CSV / XML is faster with two CPUs than one
"  Note: goes against CS accepted wisdom

!  Cross-platform
"  OS
"  Programming language

!  Extensible

!  Scales well (Google has multi-gigabyte protocol buffers)

Why not use Protocol Buffers
!  Needs libraries to be installed for every language

!  One additional thing to compile

!  Not human readable

!  Needs up front investment to design data structures
(somtimes a good thing)

Protocol Buffers: Source
package tutorial;

option java_package = "com.example.tutorial";

option java_outer_classname = "AddressBookProtos";

message Person {

 required string name = 1;

 required int32 id = 2;

 optional string email = 3;

 enum PhoneType {

 MOBILE = 0;

 HOME = 1;

 WORK = 2;

 }

 message PhoneNumber {

 required string number = 1;

 optional PhoneType type = 2 [default = HOME];

 }

 repeated PhoneNumber phone = 4;

}

Name of protocol buffer
Typed data

Discrete data

Sub-type definition

Sub-type use

Metadata to generate
Source code

Protobuffs in your favorite language
!  Compile the source into code:

!  Get IO, serialization, type checking, and access for free

package com.example.tutorial;

public final class AddressBookProtos {
 private AddressBookProtos() {}
 public static void registerAllExtensions(
 com.google.protobuf.ExtensionRegistry registry) {
 }
 public interface PersonOrBuilder
...

package com.example.tutorial;
 public static com.example.tutorial.AddressBookProtos.Person.PhoneNumber
pa
rseFrom(byte[] data)
 throws com.google.protobuf.InvalidProtocolBufferException {
 return newBuilder().mergeFrom(data).buildParsed();
 }...

 public void writeTo(com.google.protobuf.CodedOutputStream output)
 throws java.io.IOException {
 getSerializedSize();
 if (((bitField0_ & 0x00000001) == 0x00000001)) {
 output.writeBytes(1, getNameBytes());
 }
 if (((bitField0_ & 0x00000002) == 0x00000002)) {
 output.writeInt32(2, id_);
 }
 if (((bitField0_ & 0x00000004) == 0x00000004)) {
 output.writeBytes(3, getEmailBytes());
…

Steps for writing protcol buffer
!  Design data structure

!  Compile protocol buffer:

!  Create source code using
protocol buffers

!  Compile your code, include
PB library

!  Deploy

protoc addressbook.proto --
java_out=. --cpp_out=. --python_out=.

 for (Person.PhoneNumber phoneNumber :
person.getPhoneList()) {
 switch (phoneNumber.getType()) {
 case MOBILE:
 System.out.print(" Mobile phone #: ");
 break;
 case HOME:
 System.out.print(" Home phone #: ");
 break;
 case WORK:
 System.out.print(" Work phone #: ");
 break;
 }

Protocol Buffers – Moral
!  Crossplatform method to store data

!  Good support in MapReduce
"  Google: All messages assumed to be protocol buffers
"  Hadoop: Package called Elephant-Bird (Twitter)

!  Use when
"  Not in control of the data you get
"  Writing in many different programming langauges
"  Raw data need not be human readable
"  Complex projects

!  Welcome and encouraged to use them for class (but not
required)

Source: Wikipedia

Basic Cluster Components
!  One of each:

"  Namenode (NN)
"  Jobtracker (JT)

!  Set of each per slave machine:
"  Tasktracker (TT)
"  Datanode (DN)

Putting everything together…

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

namenode

namenode daemon

job submission node

jobtracker

Anatomy of a Job
!  MapReduce program in Hadoop = Hadoop job

"  Jobs are divided into map and reduce tasks
"  An instance of running a task is called a task attempt
"  Multiple jobs can be composed into a workflow

!  Job submission process
"  Client (i.e., driver program) creates a job, configures it, and

submits it to job tracker
"  JobClient computes input splits (on client end)
"  Job data (jar, configuration XML) are sent to JobTracker
"  JobTracker puts job data in shared location, enqueues tasks
"  TaskTrackers poll for tasks
"  Off to the races…

InputSplit

Source: redrawn from a slide by Cloduera, cc-licensed

InputSplit InputSplit

Input File Input File

InputSplit InputSplit

RecordReader RecordReader RecordReader RecordReader RecordReader

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

Mapper

Intermediates

In
pu

tF
or

m
at

Source: redrawn from a slide by Cloduera, cc-licensed

Mapper Mapper Mapper Mapper Mapper

Partitioner Partitioner Partitioner Partitioner Partitioner

Intermediates Intermediates Intermediates Intermediates Intermediates

Reducer Reducer Reduce

Intermediates Intermediates Intermediates

(combiners omitted here)

Source: redrawn from a slide by Cloduera, cc-licensed

Reducer Reducer Reduce

Output File

RecordWriter

O
ut

pu
tF

or
m

at

Output File

RecordWriter

Output File

RecordWriter

Input and Output
!  InputFormat:

"  TextInputFormat
"  KeyValueTextInputFormat
"  SequenceFileInputFormat
"  …

!  OutputFormat:
"  TextOutputFormat
"  SequenceFileOutputFormat
"  …

Shuffle and Sort in Hadoop
!  Probably the most complex aspect of MapReduce!

!  Map side
"  Map outputs are buffered in memory in a circular buffer
"  When buffer reaches threshold, contents are “spilled” to disk
"  Spills merged in a single, partitioned file (sorted within each

partition): combiner runs here

!  Reduce side
"  First, map outputs are copied over to reducer machine
"  “Sort” is a multi-pass merge of map outputs (happens in memory

and on disk): combiner runs here
"  Final merge pass goes directly into reducer

Hadoop Workflow

Hadoop Cluster You

1. Load data into HDFS

2. Develop code locally

3. Submit MapReduce job
3a. Go back to Step 2

4. Retrieve data from HDFS

Debugging Hadoop
!  First, take a deep breath

!  Start small, start locally

!  Unit tests

!  Strategies
"  Learn to use the webapp
"  Where does println go?
"  Don’t use println, use logging
"  Throw RuntimeExceptions

Start Small, Local
!  Many mappers can be written as an Iterable

!  Test the iterator locally on known input to make sure the
right intermediates are generated

!  Double check using an identity reducer (again, locally)

!  Test reducer locally againts Iterable output

!  Run on cluster on moderate data, debug again

Unit Tests
!  Whole courses / books on test-driven design

!  Basic Idea
"  Write tests of what you expect the code will produce
"  Unit test frameworks (like JUnit) run those tests for you
"  These tests should always pass! (Eclipse can force you)

!  Write tests ASAP
"  Catch problems early
"  Ensure tests fail
"  Modular design to your code (good for many reasons)

!  Write new tests for every bug discovered

!  Only Jeff Dean, Chuck Norris, and Brian Kernighan write
perfect code

Unit Test Example (HW 2)
 @Before
 public void setUp() {
 mapper = new TransProbMapper();
 driver = new MapDriver<LongWritable, Text, PairOfStrings,
FloatWritable>(mapper);
 }

Stub to allow mapper to emit to unit testing framework

 @Test
 public void testOneWord() {
 List<Pair<PairOfStrings, FloatWritable>> out = null;

 try {
 out = driver.withInput(new LongWritable(0), new Text("evil::mal")).run();
 } catch (IOException ioe) {
 fail();
 }

 List<Pair<PairOfStrings, FloatWritable>> expected =
 new ArrayList<Pair<PairOfStrings, FloatWritable>>();

 expected.add(new Pair<PairOfStrings, FloatWritable>
 (new PairOfStrings("evil", "mal"), EXPECTED_COUNT));

 expected.add(new Pair<PairOfStrings, FloatWritable>
 (new PairOfStrings("evil", "*"), EXPECTED_COUNT));

 assertListEquals(expected, out);
 }

Send input to mapper

Precompute the expected output

Check that they were actually the same

Recap
!  Hadoop data types

!  Anatomy of a Hadoop job

!  Hadoop jobs, end to end

!  Software development workflow

Source: Wikipedia (Japanese rock garden)

Questions?

