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Regression and Classification

Big Picture:

o C(lassification takes a set of features X and for each input x; gives a
discrete output y (e.g. given words in a document say whether it's
spam or not)

@ Regression takes a set of features X and for each input x; gives a
continuous response y (e.g. given words in a document say how many
stars the review gives to a product on Amazon)
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Outline

@ Linear Regression
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Linear Regression
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Data are the set of inputs and outputs, D = {(xj, yi)}1_4
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Linear Regression

In linear regression, the goal is to predict y from x using a linear function
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Linear Regression

Examples of linear regression:
@ given a child's age and gender, what is his/her height?

@ given unemployment, inflation, number of wars, and economic
growth, what will the president’s approval rating be?

@ given a browsing history, how long will a user stay on a page?
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Linear Regression
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Multiple Covariates

Often, we have a vector of inputs where each represents a different feature
of the data

x=(x1,...,Xp)

The function fitted to the response is a linear combination of the covariates

p
F(x)=Bo+ > Bix;

j=1
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Multiple Covariates

Often, it is convenient to represent x as (1, x1,...,Xp)

@ In this case x is a vector, and so is 3 (we'll represent them in bold

face)
@ This is the dot product between these two vectors
@ This then becomes a sum (this should be familiar!)

p
Bx=Bo+ > Bix;

Jj=1
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Hyperplanes: Linear Functions in Multiple Dimensions
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Covariates

@ Do not need to be raw value of xq,xo, ...
@ Can be any feature or function of the data:
» Transformations like x, = log(x1) or x» = cos(x1)
» Basis expansions like x, = X12, X3 = Xj, Xa = Xf, etc
> Indicators of events like xo = 1;_1<, <1}
» Interactions between variables like x3 = x1x
@ Because of its simplicity and flexibility, it is one of the most widely
implemented regression techniques
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Outline

© Fitting a Regression

Digging into Data (UMD) Linear Regression February 17, 2014 12 / 41



Fitting a Linear Regression

Idea: minimize the Euclidean distance between data and fitted line

n

RSS(8) = 5 > (i — i)’
i=1
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How to Find (8

@ Use calculus to find the value of 8 that minimizes the RSS

@ The optimal value is

B _ E?:l YiXi
>oim1 Xi2
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Prediction

o After finding B, we would like to predict an output value for a new set
of covariates

@ We just find the point on the line that corresponds to the new input:

¥ = Po + Bix (1)
A
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Prediction

o After finding ﬁA we would like to predict an output value for a new set
of covariates

@ We just find the point on the line that corresponds to the new input:

9 = 1.0+ 0.5x (1)
A /'
0 %
00, O
Q”
y=1.0 + 0.5x /c/ .
P O
V2 >
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Prediction
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Prediction

o After finding B, we would like to predict an output value for a new set

of covariates
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Probabilistic Interpretation

@ Our analysis so far has not included any probabilities

@ Linear regression does have a probabilisitc (probability model-based)
interpretation
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Probabilistic Interpretation

@ Linear regression assumes that response values have a Gaussian
distribution around the linear mean function,

Yi|xi, B ~ N(x;3,0°)

@ This is a discriminative model, where inputs x are not modeled

@ Minimizing RSS is equivalent to maximizing conditional likelihood
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© Example
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Example: Old Faithful
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Example: Old Faithful

We will predict the time that we will have to wait to see the next eruption
given the duration of the current eruption

> library(datasets)

> names(faithful)

[1] "eruptions" "waiting"

> attach(faithful)

> plot(eruptions,waiting,xlab="Current Eruption Time (min)",
+ ylab="Waiting Time (min)",pch=16)
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Example: Old Faithful
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Regressions in Rattle

Data | ExplorelTest|Transform | CIusterlAssodate Model | Evaluate | Log|
Type: O Tree O Forest O Boost O SVM (® O Neural Net O Survival O All
@® Numeric (O Generalized O Poisson (O Logistic (O Probit (O Multinomial

[
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Example: Old Faithful

To fit a linear model in R, Rattle uses the 1Im( ) function, which stands for

“linear model”

> fit.Ilm <- lm(waiting ~ eruptions)
> fit.Im

Call:
Im(formula = waiting ~ eruptions)

Coefficients:
(Intercept) eruptions
33.47 10.73

> names(fit.1lm)

[1] "coefficients" ‘"residuals" "effects"

[4] "rank" "fitted.values" "assign"

[7] "qr" "df .residual"  "xlevels"

[10] "call" "terms" "model"
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Example: Old Faithful

We can plot our data and make a function for new predictions

> # Plot a line on the data
> abline(fit.lm,col="red",1lwd=3)
>
> # Make a function for prediction
> fit.lm$coefficients[1]
(Intercept)
33.4744

> fit.Ilm$coefficients[2]
eruptions

10.72964

> faithful.fit <- function(x) fit.lm$coefficients[1] +
fit.1lm$coefficients[2] *x

> x.pred <- c(2.0, 2.7, 3.8, 4.9)

> faithful.fit(x.pred)

[1] 54.93368 62.44443 74.24703 86.04964
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Example: Old Faithful

Waiting Time (min)

T T T T T T T T
1.5 2.0 25 3.0 3.5 4.0 4.5 5.0

Current Eruption Time (min)

Digging into Data (UMD) Linear Regression February 17, 2014 25 /41



Outline

@ Regularized Regression
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Multivariate Linear Regression

Example: p =1, have 2 points
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e Have p + 1 or fewer points, line goes through all (or p with mean 0
data)

e Have more than p + 1 (but still close to that number), line goes close
to all points
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Noise, Bias, Variance Tradeoff

@ Noise: Lower bound on
performance

@ Bias: Error as a result as
choosing the wrong model
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Error

@ Variance: Variation due to
training sample and
Model Complaxity randomization
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Noise, Bias, Variance Tradeoff

@ Noise: Lower bound on
performance

@ Bias: Error as a result as
choosing the wrong model

Cptmam Mode Complenty

Variance

Error

@ Variance: Variation due to
_ training sample and
Model Complaxity randomization

@ No model is perfect
@ More complex models are more susceptible to errors due to variance
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Multivariate Linear Regression

Why linear regression:
@ has few parameters to estimate (p)

o really restrictive model-low variance, higher bias

S
>

high

BIAS
@

low

low VARIANCE high <

@ should be good for data with few observations, large number of
covariates...

@ ... but we can’t use it in this situation
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Multivariate Linear Regression

Idea: if we have a large number of covariates compared to observations,

say n < 2p, best to estimate most coefficients as 0!

@ not enough info to determine all coefficients
@ try to estimate ones with strong signal

@ set everything else to 0 (or close)

Coefficients of 0 may not be a bad assumption...

If we have 1,000s of coefficients, are they all equally important?
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Gene Expression

Example: microarray gene expression data

@ gene expression: want to measure the level at which information in a
gene is used in the synthesis of a functional gene product (usually
protein)

@ can use gene expression data to determine subtype of cancer (e.g.
which type of Lymphoma B?) or predict recurrence, survival time, etc

@ problem: thousands of genes, hundreds of patients, p > n!

Intuition: only a handful of genes should affect outcomes
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Gene Expression

@ gene expression levels are continuous values

@ data: observation i is gene expression levels from patient /, attached
to outcome for patient (survival time)

@ covariates: expression levels for p genes
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Gene Expression

@ collinearity: does it matter which gene is selected for prediction? No!

@ overfitting: now fitting p’ non-0 coefficients to n observations with
p’ << n means less fitting of noise
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Regularized Linear Regression

Regularization:
@ still minimize the RSS

o place a penalty on large values for f1, ..., Bp (why not 5p? can always
easily estimate mean)

@ add this penalty to the objective function

@ solve for !

New objective function:

n

. 1 d
f=argmin g > (i —xiB)? + 1) penalty(3;)

i—1 j=1

A acts as a weight on penalty: low values mean few coefficients near 0,
high values mean many coefficients near 0

Digging into Data (UMD) Linear Regression February 17, 2014 34 /41



Regularized Linear Regression

Regularization:
@ still minimize the RSS

o place a penalty on large values for f1, ..., Bp (why not 5p? can always
easily estimate mean)

@ add this penalty to the objective function

@ solve for !

New objective function:

n

. 1 P
B = arg min 5 D (vi—xiB)* + A penalty(8))

i=1 j=1

A acts as a weight on penalty: low values mean few coefficients near 0,
high values mean many coefficients near 0

Digging into Data (UMD) Linear Regression February 17, 2014 34 /41



Regularized Linear Regression

Regularization:
@ still minimize the RSS

o place a penalty on large values for f1, ..., Bp (why not 5p? can always
easily estimate mean)

@ add this penalty to the objective function

@ solve for !

New objective function:

n

. 1 P
B=argmin s> (v —xif)” + A _ penalty(5)

i=1 j=1

A acts as a weight on penalty: low values mean few coefficients near 0,
high values mean many coefficients near 0

Digging into Data (UMD) Linear Regression February 17, 2014 34 /41



Regularized Linear Regression

Regularization:
@ still minimize the RSS

o place a penalty on large values for f1, ..., Bp (why not 5p? can always
easily estimate mean)

@ add this penalty to the objective function

@ solve for !

New objective function:

n

. 1 d
f=argmin g > (i —xiB)?+ 1) penalty(5;)

i=1 j=1

A acts as a weight on penalty: low values mean few coefficients near 0,
high values mean many coefficients near 0

Digging into Data (UMD) Linear Regression February 17, 2014 34 /41



Regularized Linear Regression

Regularization: what is a good penalty function?

Same as penalties used to fit errors:

o Ridge regression (squared penalty):

. 1< P
Ridge _ . a2 2
B ge—argmﬂlnEE (vi = xiB)> + A B

i=1 j=1
@ Lasso regression (absolute value penalty):

n

R 1 P
L _ .  v.R)2 .
/8 asso _ arg mﬂln 5 E (YI X,ﬂ) + A E ’ﬂj‘

i=1 j=1
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Comparing Ridge and Lasso

Ridge

Lasso

Objective
Estimator
Coefficients
Stability

% 27:1 (vi — x,ﬂ)2 +A Zf:o /6./2
(XX + M) XTy
most close to 0
robust to changes in X, y

I i = xiB) + A, 1B
not closed form
most exactly 0
not robust to changes in X, y

Regularized linear regression is fantastic for low signal datasets or those

with p >> n

e Ridge: good when many coefficients affect value but not large (gene

expression)

o Lasso: good when you want an interpretable estimator
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Choosing A

Both Ridge and Lasso have a tunable parameter, A

@ use cross validation to find best A
n 2
A =arg m/\in z; <yi - Xiﬁ—i,A)
=

@ try out many values

@ see how well it works on “development” data
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Outline

e Wrapup
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Regression

@ Workhorse technique of data analysis

e Fundamental tool that we will use later for classification (“Logistic
Regression”)

@ Important to understand interpretation of regression parameters
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In Class

o We'll try out regression on a newspaper dataset
o Make predictions

@ Build intuitions about what a good regression looks like
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Homework 2

@ Regression to predict home prices
@ Competition with your classmates

@ Linear regression will work okay, but to do well, you'll need regularized
regression
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