

Spectral Methods

Advanced Machine Learning for NLP Jordan Boyd-Graber TENSOR APPROACH

- You have a model
- What correlations should you see if model true
- Can you reverse the model from these correlations?
- You have a model
- What correlations should you see if model true
- Can you reverse the model from these correlations?
- Yes!

Mixture of Multinomials

- \bullet *k* topics: $\phi_1, \ldots \phi_k$
- Observe topic *i* with probability *θⁱ*
- Observe m (exchangeable) words $w_1, \ldots w_m$ iid from μ_i
- Given: *m*-word documents
- Goal: *φ*'s, *θ*
- \bullet One-hot word encoding $w_1 = [0, 1, 0, \dots]^\top$
- ϕ_i are probability vectors
- Conditional probabilities are parameters

$$
Pr[w_1] = \mathbb{E}[w_1 | \text{topic } i] = \phi_i \tag{1}
$$

- Find parameters consisten with observed moments
- Alternative to EM / objective-based techniques
- Topic model moments

Pr[
$$
w_1
$$
] (2)
Pr[w_1, w_2] (3)
Pr[w_1, w_2, w_3] (4)

$$
\vdots \hspace{1.5cm} (5)
$$

With one word per document,

$$
Pr[w_1] = \sum_{i=1}^{k} \theta_i \phi_i
$$
 (6)

Not identifiable: only *d* numbers

Problem setup

• (Tensor) Want to find good solution to

$$
T = \sum_{t=1}^{d} \theta_t \vec{\phi}_t \otimes \vec{\phi}_t \otimes \vec{\phi}_t
$$
 (7)

◦ ⊗ is dyadic product, creating a *d* × *d* × *d* matrix (similar to *d* × *d* Anchor term)

Problem setup

• (Tensor) Want to find good solution to

$$
T = \sum_{t=1}^{d} \theta_t \vec{\phi}_t \otimes \vec{\phi}_t \otimes \vec{\phi}_t
$$
 (7)

- ⊗ is dyadic product, creating a $d \times d \times d$ matrix (similar to $d \times d$ Anchor term)
- (Matrix) Want to find eigendecomposition of

$$
M = \sum_{t=1}^{n} \theta_t \vec{\phi}_t \vec{\phi}_t^{\top}
$$
 (8)

• But we won't see actual M , it will have error $\mathscr E$

Problem setup

• (Tensor) Want to find good solution to

$$
T = \sum_{t=1}^{d} \theta_t \vec{\phi}_t \otimes \vec{\phi}_t \otimes \vec{\phi}_t
$$
 (7)

- ⊗ is dyadic product, creating a $d \times d \times d$ matrix (similar to $d \times d$ Anchor term)
- (Matrix) Want to find eigendecomposition of

$$
M = \sum_{t=1}^{n} \theta_t \vec{\phi}_t \vec{\phi}_t^{\top}
$$
 (8)

- But we won't see actual M , it will have error $\mathscr E$
	- Unique if *θⁱ* are
	- \circ Solveable if $||\mathscr{E}||_2 < \min_{i \neq j} |\theta_i \theta_j|$

Input: $T \in \mathbb{R}^{n \times n \times n}$. Initialize: $\widetilde{T} := T$. For $i = 1, 2, ..., n$: 1. Pick $\vec{x}^{(0)} \in \mathbb{S}^{n-1}$ unif, at random. 2. Run tensor power iteration with \widetilde{T} starting from $\vec{x}^{(0)}$ for N iterations. 3. Set $\hat{v}_i := \vec{x}^{(N)}/\|\vec{x}^{(N)}\|$ and $\hat{\lambda}_i := f_{\widetilde{\tau}}(\hat{v}_i)$. 4. Replace $\widetilde{T} := \widetilde{T} - \widehat{\lambda}_i \widehat{v}_i \otimes \widehat{v}_i \otimes \widehat{v}_i$. **Output:** $\{(\hat{v}_i, \hat{\lambda}_i) : i \in [n]\}.$

- Allows you to find individual eigenvalue / eigenvector pairs
- $\bullet \,$ Matrix: linearly quickly $O\bigl(\log \frac{1}{\|\mathscr{E}\|}\bigr)$
- $\bullet\,$ Tensor: quadratically quickly $O\bigl(\log\log{1\over {\|\mathscr{E} \|}}\bigr)$
- Both require gap between largest and second-largest *θⁱ*

$$
\left\| T - \sum_{t} \theta_{t} \phi_{t} \otimes \phi_{t} \otimes \phi_{t} \right\|_{F}^{2} \tag{9}
$$

- Use gradient descent to directly optimize parameters
- Wins over "standard" approaches because fewer observations
- Disliked by theory folks
- • If you only care about high-level patterns
- You can often get that from statistical summaries
- **Ignore the data!**
- These approaches often have nice runtimes