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Evaluation

• User study

• 40 minutes

• Sort documents into categories

• What information / interface helps best

◦ Train a classifier on human examples
◦ Compare classifier labels to expert judgements
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Evaluation

• User study

• 40 minutes

• Sort documents into categories

• What information / interface helps best

◦ Train a classifier on human examples (don’t tell them how many
labels)

◦ Compare classifier labels to expert judgements (purity)
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Which is more Useful?

Who should drive?
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Which is more Useful?

Active Learning Topic Models
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Direct users to document
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Better than status quo
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Topics with Active Learning

Active learning can help topic models
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Topic models help users understand the collection
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Topics with Active Learning

Topics, no Active Learning

Moral: machines and humans together (if you let them)



New Research

This city’s mass transit system’s director, Paul 
Wiedefeld, undertook SafeTrack to restore reliability 
of the system.  For ten points each …
[10]Name this American city with stations designed 
by Harry Weese.

stations designed by Harry Weese

Paul Wiedefeld

this American city SafeTrack

This city’s mass transit 

undertook SafeTrack

Washington DC

Baltimore

New York City

London

Singapore

Washington Metro

Seattle

Maryland Transit Administration

Boston

Prediction Evidence
Washington Metro

Baltimore

Washington, D.C.

34%

25%

31%

• Have a task humans are doing

• Show them predicitons of good system

• Measure how much human performance improves (degrades)
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Improving Visualizations
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Improving Visualization Tutoring

• If you have feedback on performance, can use RL

• Change parameters of visualizations

◦ How many/which hypotheses are shown
◦ How much/which evidence is shown
◦ Is anything shown at all?

• Can optimize for team performance
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Improving Visualization Tutoring

• If you have feedback on performance, can use RL
• Change parameters of visualizations
◦ How many/which hypotheses are shown
◦ How much/which evidence is shown
◦ Is anything shown at all?
◦ Which questions are shown

• Can optimize for team performance or just human performance
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Evaluation Takeaway

• Measure what you care about

• If you care about prediction, likelihood is good

• If you care about a particular task, measure that
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