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Evaluating Word Embeddings

(a) swiftly (b) expertly (c) cleverly

(d) pointedly (e) I don’t know the meaning of one (or several) of the words

¢ Collected without reference to embeddings

o Balance rare and frequent words (e.g., play vs. devour)
o Balance POS classes (e.g., skillfully vs. piano)
o Balance abstractness/concreteness (e.g., eagerness vs. table)

¢ See if embeddings can answer questions
¢ Perhaps not right questions to distinguish methods
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Proposal

Query
Embedding 2 ‘ —_—

Embedding 3

Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims.
Evaluation methods for unsupervised word embeddings, EMNLP 2015.
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Setup

e Embeddings
o Prediction-based: CBOW and Collobert&Weston (CW)
o Reconstruction-based: CCA, Hellinger PCA, Random Projections,
GloVe
o Trained on Wikipedia (2008), made vocabularies the same
¢ Details

o Options came from position k =1,5,50 in NN from each embedding
o 100 query words x 3 ranks = 300 subtasks
o Users of Amazon Mechanical Turk answered 50 such questions

e Win score: Fraction of votes for each embedding, averaged
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Winners
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What about Intruders?

Query word Nearest neighbors
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What about Intruders?

(a) finally (b) eventually
(c) put (d) immediately
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What about Intruders?
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(a) Normalized scores by global word frequency.
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Downstream Tasks?

Score

Intrinsic performance
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