

Topic Models

Advanced Machine Learning for NLP Jordan Boyd-Graber EVALUATION

Evaluation

$$P(\boldsymbol{w} | \boldsymbol{w}', \boldsymbol{z}', \alpha \boldsymbol{m}, \beta \boldsymbol{u}) = \sum_{\boldsymbol{z}} P(\boldsymbol{w}, \boldsymbol{z} | \boldsymbol{w}', \boldsymbol{z}', \alpha \boldsymbol{m}, \beta \boldsymbol{u})$$

How you compute it is important too

Evaluation

Measures predictive power, not what the topics are

$$P(\boldsymbol{w} | \boldsymbol{w}', \boldsymbol{z}', \alpha \boldsymbol{m}, \beta \boldsymbol{u}) = \sum_{\boldsymbol{z}} P(\boldsymbol{w}, \boldsymbol{z} | \boldsymbol{w}', \boldsymbol{z}', \alpha \boldsymbol{m}, \beta \boldsymbol{u})$$

How you compute it is important too

TOPIC 1

computer, technology, system, service, site, phone, internet, machine

TOPIC 2

sell, sale, store, product, business, advertising, market, consumer **TOPIC 3**

play, film, movie, theater, production, star, director, stage 1 Take the highest probability words from a topic

Original Topic dog, cat, horse, pig, cow Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

2 Take a high-probability word from another topic and add it

Topic with Intruder

dog, cat, apple, horse, pig, cow

Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

2 Take a high-probability word from another topic and add it

Topic with Intruder

dog, cat, apple, horse, pig, cow

3 We ask users to find the word that doesn't belong

Hypothesis

If the topics are interpretable, users will consistently choose true intruder

Word Intrusion

1 / 10 crash	accident	board	agency	tibetan	safety
2 / 10 commercial	network	television	advertising	viewer	layoff
3 / 10 arrest	crime	inmate	pitcher	prison	death
4 / 10 hospital	doctor	health	care	medical	tradition

Word Intrusion

1 / 10	Reveal additional response							
crash	accident	board	agency	tibetan	safety			
a 140								
2/10								
commercial	network	television	advertising	viewer	layoff			
3/10								
arrest	crime	inmate	pitcher	prison	death			
4.440								
4/10								
hospital	doctor	health	care	medical	tradition			

- Order of words was shuffled
- Which intruder was selected varied
- Model precision: percentage of users who clicked on intruder

Word Intrusion: Which Topics are Interpretable?

Model Precision: percentage of correct intruders found

Model Precision on New York Times

within a model, higher likelihood \neq higher interpretability

Topic Log Odds on Wikipedia

across models, higher likelihood \neq higher interpretability

- Classification
- Machine Translation
- Political Polarization/Framing

- Classification
- Machine Translation
- Political Polarization/Framing