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Evaluation

Held-out DataForget the Bootleg, Just 
Download the Movie LegallyMultiplex Heralded As 

Linchpin To GrowthThe Shape of Cinema, 
Transformed At the Click of 

a Mouse
A Peaceful Crew Puts 

Muppets Where Its Mouth IsStock Trades: A Better Deal 
For Investors Isn't SimpleThe three big Internet 
portals begin to distinguish 

among themselves as 
shopping malls

Red Light, Green Light: A 
2-Tone L.E.D. to 
Simplify Screens

Model C

Corpus
Model A

Model B Sony Ericsson's Infinite 
Hope for a TurnaroundFor Search, Murdoch Looks 
to a Deal With MicrosoftPrice War Brews Between 

Amazon and Wal-Mart

-4.8

-15.16

-23.42

How you compute it is important too
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Measures predictive power, not what the topics are

How you compute it is important too
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Word Intrusion

computer, 
technology, 

system, 
service, site, 

phone, 
internet, 
machine

play, film, 
movie, theater, 

production, 
star, director, 

stage

sell, sale, 
store, product, 

business, 
advertising, 

market, 
consumer

TOPIC 1 TOPIC 2 TOPIC 3
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Word Intrusion

1 Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow

2 Take a high-probability word from another topic and add it

Topic with Intruder

dog, cat, apple, horse, pig, cow

3 We ask users to find the word that doesn’t belong

Hypothesis

If the topics are interpretable, users will consistently choose true intruder
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Word Intrusion

• Order of words was shuffled
• Which intruder was selected varied
• Model precision: percentage of users who clicked on intruder
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Word Intrusion: Which Topics are Interpretable?

New York Times, 50 LDA Topics

Model Precision
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Model Precision: percentage of correct intruders found
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Interpretability and Likelihood

Model Precision on New York Times
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within a model, higher likelihood 6= higher interpretability
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Interpretability and Likelihood

Topic Log Odds on Wikipedia
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Downstream Tasks

• Classification

• Machine Translation

• Political Polarization/Framing
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