

Memory Networks

Advanced Machine Learning for NLP Jordan Boyd-Graber LSTM WALKTHROUGH

Slides adapted from Christopher Olah

(Can be other nonlinearities)

LSTM has more complicated innards

LSTM has more complicated innards

Built on gates!

- Multiply vector dimension by value in [0, 1]
- Zero means: forget everything
- One means: carry through unchanged
- LSTM has three different gates

Can pass through (memory)

Deciding When to Forget

$$f_t = \sigma \left(W_f \cdot [h_{t-1}, x_t] + b_f \right)$$

Based on previous hidden state h_{t-1} , can decide to forget past cell state

Updating representation

Compute new contribution to cell state based on hidden state h_{t-1} and input x_t . Strength of contribution is i_t

Updating representation

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

Interpolate new cell value

Output hidden

$$o_t = \sigma \left(W_o \left[h_{t-1}, x_t \right] + b_o \right)$$
$$h_t = o_t * \tanh \left(C_t \right)$$

Hidden layer is function of cell C_t , not h_{t-1}

- To create a complete model, need to make a prediction
- Usually function of hidden layer(s)
 - Hinge loss of sentence label based on last word
 - Softmax of tag for each word