
Frameworks

Advanced Machine Learning for NLP
Jordan Boyd-Graber
RECURRENT NEURAL NETWORKS IN DYNET

Slides adapted from Chris Dyer, Yoav Goldberg, Graham Neubig

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 1 of 1

Recurrent Neural Networks

• NLP is full of sequential data

◦ Words in sentences
◦ Characters in words
◦ Sentences in discourse

• How do we represent an arbitrarily long history? we will train neural
networks to build a representation of these arbitrarily big sequences

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 2 of 1

Recurrent Neural Networks

• NLP is full of sequential data

◦ Words in sentences
◦ Characters in words
◦ Sentences in discourse

• How do we represent an arbitrarily long history?

we will train neural
networks to build a representation of these arbitrarily big sequences

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 2 of 1

Recurrent Neural Networks

• NLP is full of sequential data

◦ Words in sentences
◦ Characters in words
◦ Sentences in discourse

• How do we represent an arbitrarily long history? we will train neural
networks to build a representation of these arbitrarily big sequences

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 2 of 1

Recurrent

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 3 of 1

Recurrent NN

How do we train the parameters?

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 4 of 1

Recurrent NN

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 4 of 1

Recurrent NN

Parameter tying

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 4 of 1

Recurrent NN

Parameter tying

Unrolling
• Well-formed (DAG) computation graph—we can run backprop

• Parameters are tied across time, derivatives are aggregated across all
time steps

• “backpropagation through time”

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 4 of 1

Recurrent NN

Each word contributes to gradient

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 4 of 1

Recurrent NN

Summarize sentence into downstream vector

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 4 of 1

Recurrent NN

Let’s get more concrete: RNN language model

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 4 of 1

Recurrent NN

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 4 of 1

Recurrent NN

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 4 of 1

Recurrent NN

Training (log loss from each word)

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 4 of 1

RNNs in DyNet

• Based on “Builder” class (for variety of models)

• Can also roll your own

• Add parameters to model (once)
RNN (layers=1, input=64, hidden=128, model)
RNN = dy.SimpleRNNBuilder(1, 64, 128, model)

• Add parameters to CG and get initial state (per sentence)
s = RNN.initial_state()

• Update state and access (per input word/character)
s = s.add_input(x_t)
h_t = s.output()

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 5 of 1

Parameter Initialization

Lookup parameters for word embeddings
WORDS_LOOKUP = model.add_lookup_parameters((nwords, 64))

Word-level LSTM (layers=1, input=64, hidden=128, model)
RNN = dy.LSTMBuilder(1, 64, 128, model)

Softmax weights/biases on top of LSTM outputs
W_sm = model.add_parameters((nwords, 128))
b_sm = model.add_parameters(nwords)

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 6 of 1

Sentence Initialization

Build the language model graph
def calc_lm_loss(wids):

dy.renew_cg()

parameters -> expressions
W_exp = dy.parameter(W_sm)
b_exp = dy.parameter(b_sm)

add parameters to CG and get state
f_init = RNN.initial_state()

get the word vectors for each word ID
wembs = [WORDS_LOOKUP[wid] for wid in wids]

Start the rnn by inputting "<s>"
s = f_init.add_input(wembs[-1])

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 7 of 1

Loss Calculation and State Update

process each word ID and embedding
losses = []
for wid, we in zip(wids, wembs):

calculate and save the softmax loss
score = W_exp * s.output() + b_exp
loss = dy.pickneglogsoftmax(score, wid)
losses.append(loss)

update the RNN state with the input
s = s.add_input(we)

return the sum of all losses
return dy.esum(losses)

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 8 of 1

Custom Functions

• DyNet has a lot of functions

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 9 of 1

Custom Functions

• DyNet has a lot of functions

Built-in Functions
addmv, affine_transform, average, average_cols, binary_log_loss, block_dropout, cdiv, colwise_add, concatenate, concatenate_cols,

const_lookup, const_parameter, contract3d_1d, contract3d_1d_1d, conv1d_narrow, conv1d_wide, cube, cwise_multiply, dot_product,

dropout, erf, exp, filter1d_narrow, fold_rows, hinge, huber_distance, input, inverse, kmax_pooling, kmh_ngram, l1_distance, lgamma, log,

log_softmax, logdet, logistic, logsumexp, lookup, max, min, nobackprop, noise, operator*, operator+, operator-, operator/,

pairwise_rank_loss, parameter, pick, pickneglogsoftmax, pickrange, poisson_loss, pow, rectify, reshape, select_cols, select_rows,

softmax, softsign, sparsemax, sparsemax_loss, sqrt, square, squared_distance, squared_norm, sum, sum_batches, sum_cols, tanh,

trace_of_product, transpose, zeroes

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 9 of 1

Custom Functions

• DyNet has a lot of functions

• Implement yourself

◦ Combine built-in Python operators (chain rule)
◦ Forward/Backward methods in C++

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 9 of 1

Custom Functions

• DyNet has a lot of functions

• Implement yourself

◦ Combine built-in Python operators (chain rule)
◦ Forward/Backward methods in C++
◦ Geometric Mean

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 9 of 1

Forward Function

template<class MyDevice>
void GeometricMean::forward_dev_impl(const MyDevice & dev,

const vector<const Tensor*>& xs,
Tensor& fx) const {

fx.tvec().device(*dev.edevice) =
(xs[0]->tvec() * xs[1]->tvec()).sqrt();

}

• dev: which device (CPU/GPU)

• xs: input values

• fx: output value

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 10 of 1

Backward Function

template<class MyDevice>
void GeometricMean::backward_dev_impl(const MyDevice & dev,

const vector<const Tensor*>& xs,
const Tensor& fx,
const Tensor& dEdf,
unsigned i,
Tensor& dEdxi) const {

dEdxi.tvec().device(*dev.edevice) +=
xs[i==1?0:1] * fx.inv() / 2 * dEdf;

}

• dev: which device (CPU/GPU)
• xs: input values
• fx: output value
• dEdf: derivative of loss w.r.t f
• i: index of input to consider
• dEdxi: derivative of loss w.r.t. x [i]

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 11 of 1

Other Functions to Implement

• nodes.h: class definition

• nodes-common.cc: dimension check and function name

• expr.h/expr.cc: interface to expressions

• dynet.pxd/dynet.pyx: Python wrappers

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 12 of 1

Wrapup

• Rolling your own is usually not a good idea

• DyNet covers a very specific gap compared to TensorFlow, etc.

• Not just for neural models (e.g., variational objective)

• Don’t forget to post poject proposals!

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 13 of 1

Wrapup

• Rolling your own is usually not a good idea

• DyNet covers a very specific gap compared to TensorFlow, etc.

• Not just for neural models (e.g., variational objective)

• Don’t forget to post poject proposals!

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 13 of 1

