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RECURRENT NEURAL NETWORKS IN DYNET

Slides adapted from Chris Dyer, Yoav Goldberg, Graham Neubig
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Recurrent Neural Networks

• NLP is full of sequential data

◦ Words in sentences
◦ Characters in words
◦ Sentences in discourse

• How do we represent an arbitrarily long history? we will train neural
networks to build a representation of these arbitrarily big sequences
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Recurrent
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Recurrent NN

How do we train the parameters?
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Recurrent NN
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Recurrent NN

Parameter tying
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Recurrent NN

Parameter tying

Unrolling
• Well-formed (DAG) computation graph—we can run backprop

• Parameters are tied across time, derivatives are aggregated across all
time steps

• “backpropagation through time”
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Recurrent NN

Each word contributes to gradient
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Recurrent NN

Summarize sentence into downstream vector
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Recurrent NN

Let’s get more concrete: RNN language model
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Recurrent NN
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Recurrent NN
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Recurrent NN

Training (log loss from each word)
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RNNs in DyNet

• Based on “Builder” class (for variety of models)

• Can also roll your own

• Add parameters to model (once)
# RNN (layers=1, input=64, hidden=128, model)
RNN = dy.SimpleRNNBuilder(1, 64, 128, model)

• Add parameters to CG and get initial state (per sentence)
s = RNN.initial_state()

• Update state and access (per input word/character)
s = s.add_input(x_t)
h_t = s.output()
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Parameter Initialization

# Lookup parameters for word embeddings
WORDS_LOOKUP = model.add_lookup_parameters((nwords, 64))

# Word-level LSTM (layers=1, input=64, hidden=128, model)
RNN = dy.LSTMBuilder(1, 64, 128, model)

# Softmax weights/biases on top of LSTM outputs
W_sm = model.add_parameters((nwords, 128))
b_sm = model.add_parameters(nwords)
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Sentence Initialization

# Build the language model graph
def calc_lm_loss(wids):

dy.renew_cg()

# parameters -> expressions
W_exp = dy.parameter(W_sm)
b_exp = dy.parameter(b_sm)

# add parameters to CG and get state
f_init = RNN.initial_state()

# get the word vectors for each word ID
wembs = [WORDS_LOOKUP[wid] for wid in wids]

# Start the rnn by inputting "<s>"
s = f_init.add_input(wembs[-1])
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Loss Calculation and State Update

# process each word ID and embedding
losses = []
for wid, we in zip(wids, wembs):

# calculate and save the softmax loss
score = W_exp * s.output() + b_exp
loss = dy.pickneglogsoftmax(score, wid)
losses.append(loss)

# update the RNN state with the input
s = s.add_input(we)

# return the sum of all losses
return dy.esum(losses)
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Custom Functions

• DyNet has a lot of functions
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Custom Functions

• DyNet has a lot of functions

Built-in Functions
addmv, affine_transform, average, average_cols, binary_log_loss, block_dropout, cdiv, colwise_add, concatenate, concatenate_cols,

const_lookup, const_parameter, contract3d_1d, contract3d_1d_1d, conv1d_narrow, conv1d_wide, cube, cwise_multiply, dot_product,

dropout, erf, exp, filter1d_narrow, fold_rows, hinge, huber_distance, input, inverse, kmax_pooling, kmh_ngram, l1_distance, lgamma, log,

log_softmax, logdet, logistic, logsumexp, lookup, max, min, nobackprop, noise, operator*, operator+, operator-, operator/,

pairwise_rank_loss, parameter, pick, pickneglogsoftmax, pickrange, poisson_loss, pow, rectify, reshape, select_cols, select_rows,

softmax, softsign, sparsemax, sparsemax_loss, sqrt, square, squared_distance, squared_norm, sum, sum_batches, sum_cols, tanh,

trace_of_product, transpose, zeroes
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Custom Functions

• DyNet has a lot of functions

• Implement yourself

◦ Combine built-in Python operators (chain rule)
◦ Forward/Backward methods in C++
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Custom Functions

• DyNet has a lot of functions

• Implement yourself

◦ Combine built-in Python operators (chain rule)
◦ Forward/Backward methods in C++
◦ Geometric Mean
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Forward Function

template<class MyDevice>
void GeometricMean::forward_dev_impl(const MyDevice & dev,

const vector<const Tensor*>& xs,
Tensor& fx) const {

fx.tvec().device(*dev.edevice) =
(xs[0]->tvec() * xs[1]->tvec()).sqrt();

}

• dev: which device (CPU/GPU)

• xs: input values

• fx: output value
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Backward Function

template<class MyDevice>
void GeometricMean::backward_dev_impl(const MyDevice & dev,

const vector<const Tensor*>& xs,
const Tensor& fx,
const Tensor& dEdf,
unsigned i,
Tensor& dEdxi) const {

dEdxi.tvec().device(*dev.edevice) +=
xs[i==1?0:1] * fx.inv() / 2 * dEdf;

}

• dev: which device (CPU/GPU)
• xs: input values
• fx: output value
• dEdf: derivative of loss w.r.t f
• i: index of input to consider
• dEdxi: derivative of loss w.r.t. x [i ]

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 11 of 1



Other Functions to Implement

• nodes.h: class definition

• nodes-common.cc: dimension check and function name

• expr.h/expr.cc: interface to expressions

• dynet.pxd/dynet.pyx: Python wrappers
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Wrapup

• Rolling your own is usually not a good idea

• DyNet covers a very specific gap compared to TensorFlow, etc.

• Not just for neural models (e.g., variational objective)

• Don’t forget to post poject proposals!
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