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Major Players

• Computation Graph

• Expressions (nodes in the graph)

• Parameters

• Model (a collection of parameters)

• Trainer
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Computation Graph

import dynet as dy

dy.renew_cg() # create a new computation graph

v1 = dy.inputVector([1,2,3,4])
v2 = dy.inputVector([5,6,7,8])
# v1 and v2 are expressions

v3 = v1 + v2
v4 = v3 * 2
v5 = v1 + 1
v6 = dy.concatenate([v1,v3,v5])

>>> print(v6)
expression 5/1
>>> print(v6.npvalue())
[ 1. 2. 3. 4. 6. 8. 10. 12. 2. 3. 4. 5.]
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Computation Graph and Expressions

• Create basic expressions.

• Combine them using operations.

• Expressions represent symbolic computations.

• Actual computation:

.value()

.npvalue() #numpy value

.scalar_value()

.vec_value() # flatten to vector

.forward() # compute expression
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Models and Parameters

• Parameters are the things that we optimize over (vectors, matrices).

• Model is a collection of parameters.

• Parameters out-live the computation graph.
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Models and Parameters

model = dy.Model()

pW = model.add_parameters((2,4))
pb = model.add_parameters(2)

dy.renew_cg()
x = dy.inputVector([1,2,3,4])
W = dy.parameter(pW) # convert params to expression
b = dy.parameter(pb) # and add to the graph

y = W * x + b
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Inspecting

Let’s inspect x , W , b , and y .

>>> x.value()
[1.0, 2.0, 3.0, 4.0]

>>> W.value()
array([[ 0.64952731, -0.06049263, 0.90871298, -0.11073416],

[ 0.75935686, 0.25788534, -0.98922664, 0.20040739]])

>>> b.value()
[-1.5444282293319702, -0.660666823387146]

>>> y.value()
[1.267316222190857, -1.5515896081924438]
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Initialization

model = dy.Model()

pW = model.add_parameters((4,4))

pW2 = model.add_parameters((4,4),
init=dy.GlorotInitializer())

pW3 = model.add_parameters((4,4),
init=dy.NormalInitializer(0,1))

Glorot Initialization

N
�

wi |0,
1

nin+nout

�

(1)
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Trainers and Backprop

• Initialize a Trainer with a given model.

• Compute gradients by calling expr.backward() from a scalar node.

• Call trainer.update() to update the model parameters using the
gradients.
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Trainers and Backprop

model = dy.Model()

trainer = dy.SimpleSGDTrainer(model)

p_v = model.add_parameters(10)

for i in xrange(10):
dy.renew_cg()

v = dy.parameter(p_v)
v2 = dy.dot_product(v,v)
v2.forward()

v2.backward() # compute gradients
trainer.update()

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 10 of 1



Options for Trainers

dy.SimpleSGDTrainer(model,...)

dy.MomentumSGDTrainer(model,...)

dy.AdagradTrainer(model,...)

dy.AdadeltaTrainer(model,...)

dy.AdamTrainer(model,...)
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Training with DyNet

• Create model, add parameters, create trainer.

• For each training example:

◦ create computation graph for the loss
◦ run forward (compute the loss)
◦ run backward (compute the gradients)
◦ update parameters
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Multilayer Perceptron for XOR

• Model
ŷ =σ(v̂ · tanh(U ~x + b )) (2)

• Loss

`=

¨

− log ŷ if y = 0

− log(1− ŷ ) if y = 0
(3)
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Imports and Data

import dynet as dy
import random

data =[ ([0,1],0),
([1,0],0),
([0,0],1),
([1,1],1) ]

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 14 of 1



Create Model

model = dy.Model()
pU = model.add_parameters((4,2))
pb = model.add_parameters(4)
pv = model.add_parameters(4)

trainer = dy.SimpleSGDTrainer(model)
closs = 0.0

Advanced Machine Learning for NLP | Boyd-Graber Frameworks | 15 of 1



for x,y in data:
# create graph for computing loss
dy.renew_cg()
U = dy.parameter(pU)
b = dy.parameter(pb)
v = dy.parameter(pv)
x = dy.inputVector(x)
# predict
yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
# loss
if y == 0:

loss = -dy.log(1 - yhat)
elif y == 1:

loss = -dy.log(yhat)

closs += loss.scalar_value() # forward
loss.backward()
trainer.update()

Important: loss expression defines objective you’re optimizing
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Key Points

• Create computation graph for each example.

• Graph is built by composing expressions.

• Functions that take expressions and return expressions define graph
components.
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Word Embeddings and Lookup Parameters

• In NLP, it is very common to use feature embeddings.

• Each feature is represented as a d -dim vector.

• These are then summed or concatenated to form an input vector.

• The embeddings can be pre-trained.

• They are usually trained with the model.
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"feature embeddings"

Figure 1: Sparse vs. dense feature representations. Two encodings of the informa-
tion: current word is “dog”; previous word is “the”; previous pos-tag is “DET”.
(a) Sparse feature vector. Each dimension represents a feature. Feature combi-
nations receive their own dimensions. Feature values are binary. Dimensionality
is very high. (b) Dense, embeddings-based feature vector. Each core feature is
represented as a vector. Each feature corresponds to several input vector en-
tries. No explicit encoding of feature combinations. Dimensionality is low. The
feature-to-vector mappings come from an embedding table.

• Features are completely independent from one another. The feature “word is
‘dog’ ” is as dis-similar to “word is ‘thinking’ ” than it is to “word is ‘cat’ ”.

Dense Each feature is a d-dimensional vector.

• Dimensionality of vector is d.

• Similar features will have similar vectors – information is shared between similar
features.

One benefit of using dense and low-dimensional vectors is computational: the majority
of neural network toolkits do not play well with very high-dimensional, sparse vectors.
However, this is just a technical obstacle, which can be resolved with some engineering
e↵ort.

The main benefit of the dense representations is in generalization power: if we believe
some features may provide similar clues, it is worthwhile to provide a representation that
is able to capture these similarities. For example, assume we have observed the word ‘dog’
many times during training, but only observed the word ‘cat’ a handful of times, or not at
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vocab_size = 10000
emb_dim = 200

E = model.add_lookup_parameters((vocab_size, emb_dim))

dy.renew_cg()
x = dy.lookup(E, 5)
# or
x = E[5]
# x is an expression
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Abstract

Many existing deep learning models for
natural language processing tasks focus on
learning the compositionality of their in-
puts, which requires many expensive com-
putations. We present a simple deep neural
network that competes with and, in some
cases, outperforms such models on sen-
timent analysis and factoid question an-
swering tasks while taking only a fraction
of the training time. While our model is
syntactically-ignorant, we show significant
improvements over previous bag-of-words
models by deepening our network and ap-
plying a novel variant of dropout. More-
over, our model performs better than syn-
tactic models on datasets with high syn-
tactic variance. We show that our model
makes similar errors to syntactically-aware
models, indicating that for the tasks we con-
sider, nonlinearly transforming the input is
more important than tailoring a network to
incorporate word order and syntax.

1 Introduction

Vector space models for natural language process-
ing (NLP) represent words using low dimensional
vectors called embeddings. To apply vector space
models to sentences or documents, one must first
select an appropriate composition function, which
is a mathematical process for combining multiple
words into a single vector.

Composition functions fall into two classes: un-
ordered and syntactic. Unordered functions treat in-
put texts as bags of word embeddings, while syntac-
tic functions take word order and sentence structure
into account. Previously published experimental

results have shown that syntactic functions outper-
form unordered functions on many tasks (Socher
et al., 2013b; Kalchbrenner and Blunsom, 2013).

However, there is a tradeoff: syntactic functions
require more training time than unordered compo-
sition functions and are prohibitively expensive in
the case of huge datasets or limited computing re-
sources. For example, the recursive neural network
(Section 2) computes costly matrix/tensor products
and nonlinearities at every node of a syntactic parse
tree, which limits it to smaller datasets that can be
reliably parsed.

We introduce a deep unordered model that ob-
tains near state-of-the-art accuracies on a variety of
sentence and document-level tasks with just min-
utes of training time on an average laptop computer.
This model, the deep averaging network (DAN),
works in three simple steps:

1. take the vector average of the embeddings
associated with an input sequence of tokens

2. pass that average through one or more feed-
forward layers

3. perform (linear) classification on the final
layer’s representation

The model can be improved by applying a novel
dropout-inspired regularizer: for each training in-
stance, randomly drop some of the tokens’ embed-
dings before computing the average.

We evaluate DANs on sentiment analysis and fac-
toid question answering tasks at both the sentence
and document level in Section 4. Our model’s suc-
cesses demonstrate that for these tasks, the choice
of composition function is not as important as ini-
tializing with pretrained embeddings and using a
deep network. Furthermore, DANs, unlike more
complex composition functions, can be effectively
trained on data that have high syntactic variance. A

1681

"Document Averaging Networks" 

text classification

Implementing a non-trivial example . . .



Deep Averaging Network

w1, . . . , wN

↓
z0 =CBOW(w1, . . . , wN )

z1 =g (z1)

z2 =g (z2)

ŷ =softmax(z3)

• Works about as well as more complicated models

• Strong baseline

• Key idea: Continuous Bag of Words

CBOW(w1, . . . , wN ) =
∑

i

E [wi ] (4)

• Actual non-linearity doesn’t matter, we’ll use tanh

• Let’s implement in DyNet
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Deep Averaging Network

w1, . . . , wN

↓
z0 =CBOW(w1, . . . , wN )

z1 =g (z1)

z2 =g (z2)

ŷ =softmax(z3)

Encode the document
def encode_doc(doc):

doc = [w2i[w] for w in doc]
embs = [E[idx] for idx in doc]
return dy.esum(embs)

First Layer
def layer1(x):

W = dy.parameter(pW1)
b = dy.parameter(pb1)
return dy.tanh(W*x+b)

Second Layer
def layer2(x):

W = dy.parameter(pW2)
b = dy.parameter(pb2)
return dy.tanh(W*x+b)
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Deep Averaging Network

w1, . . . , wN

↓
z0 =CBOW(w1, . . . , wN )

z1 =g (z1)

z2 =g (z2)

ŷ =softmax(z3)

Loss
def do_loss(probs, label):

label = label_indicator[label]
return -dy.log(dy.pick(probs,label)) # select that index

Putting it all together
def predict_labels(doc):

x = encode_doc(doc)
h = layer1(x)
y = layer2(h)
return dy.softmax(y)

Training
for (doc, label) in data:

dy.renew_cg()
probs = predict_labels(doc)

loss = do_loss(probs,label)
loss.forward()
loss.backward()
trainer.update()
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Summary

• Computation Graph

• Expressions (≈ nodes in the graph)

• Parameters, LookupParameters

• Model (a collection of parameters)

• Trainers

• Create a graph for each example, thenâĂĺcompute loss, backdrop,
update.
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