Deep Language Models

Nicholas Dronen !

IHERE, North America

March 13, 2017

What is a language model?

A language model estimates the probability of a word w; given
preceding words w;_ (1), Wi—(n—2)s s Wi-1-

For a bigram model (i.e., when n = 2), the probability of a
length-k sequence w; ... wy, denoted w’f, is:

k

P(u) = [| P(wjlw;-1)
j=1

Applications of language models

o As a generative model: given some initial state (random or
sampled from a data set), generate a statistically likely
sequence of words.

Applications of language models

o As a generative model: given some initial state (random or
sampled from a data set), generate a statistically likely
sequence of words.

o As a discriminative model: given a document, provide a
point estimate of the probability of the document.
(Generalizes to multiclass classification.)

Fundamental limitation of language models

o The space of linguistic expression is infinite.

Fundamental limitation of language models

o The space of linguistic expression is infinite.

o Data sets are finite.

Fundamental limitation of language models

o The space of linguistic expression is infinite.
o Data sets are finite.
o As n increases, the probability of encountering a sequence

(of in-vocabulary words) that did not occur in the training
set increases.

Fundamental limitation of language models

o The space of linguistic expression is infinite.
o Data sets are finite.

o As n increases, the probability of encountering a sequence
(of in-vocabulary words) that did not occur in the training
set increases.

o How do (non-deep) language models address this?

Fundamental limitation of language models

Denote a word w as a vector v of length | V] with 1 at v;, and 0
elsewhere, where V is the set of words in the vocabulary and 7 is
a vector of indices.

Wj—4 Wi—3 Wi—2 Wi—2 Wj

What is the cosine similarity of any pair of words?

Fundamental limitation of language models

Denote a word w as a vector v of length | V] with 1 at v;, and 0
elsewhere, where V is the set of words in the vocabulary and 7 is
a vector of indices.

Wi—q Wj—3 Wj—2 W;—2 Wy

What is the cosine similarity of any pair of words?

What behavior would the distributional hypothesis lead you to
expect of word representations?

Representation matters

Deep language models use learned, continuous representations,
which behave in concordance with the distributional hypothesis.

Wi—q Wj—3 Wj—2 W;—1 Wy

Wi—g Wi—3 Wi—2 Wi—] W

Continuous representations and generalization

DT NN VBZ VBG IN DT NN
The cat is walking in the bedroom
A dog was running in a room

The cat is running in a room
A dog s walking in a bedroom
The dog was walking in the room

Papers for today

o “A Neural Probabilistic Language Model”, Bengio et al,
2003

o “On the difficulty of training Recurrent Neural Networks”,
Pascanu et al, 2013

o “Recurrent neural network based language model”, Mikolov
et al, 2010

Functional view of models

A Wiy Wipt1, ..., wi1) — w; (Bengio et al, 2003)
fwi—1) = w; (Mikolov et al, 2010)

Word embeddings

Input to
network

‘Word
embedding
matrix

7
Embedding indices —— 1 2 6 9 7

T 1\ T T 1\ « Mapping from

words to indices
Word inputs ———— W;5 1 Wi—3 Wi Wi |

A Neural Probabilistic Language Model

i-th output = P(w, = i | context)

softmax
[X XN o0)
~

most| computation here \\

\
\
\
1
tanh !
Ceee — o) |

.
SN C(Wr—z) C(w,,l) _ ’

~

(oo ... 0) (oo ---0)

. Matrix C

shared parameters
across words

index for w41 index for w;_y index for w,_;

What is the most expensive operation in this network?
Why the skip connections?

The curse of the normalization term

t=(Cuys Cup_sgr-- > Cuy_pir)
y="b+ Wz+ U tanh(d + Hx)
P(uw))=
W | Wi—15 « « -y Wt—n41) = :
Zi eYi

The time complexity of a forward pass through the network is

O(|V|(nm + h)), where
o Vis the set of words in the vocabulary,

o n is the n-gram order,
o m is the dimensions of the word embeddings,

o and A is the number of hidden units.

Attacking the normalization term bottleneck

o Data-parallel approach

Attacking the normalization term bottleneck

o Data-parallel approach
o One host, shared memory (“SMP”)

Attacking the normalization term bottleneck

o Data-parallel approach
o One host, shared memory (“SMP”)
o Each processor computes
o Suffers from lock contention

Attacking the normalization term bottleneck

o Data-parallel approach

One host, shared memory (“SMP”)
Each processor computes

Suffers from lock contention

Asynchronous version: lock-free parameter updates (cf.
Hogwild)

]

© © ©

Attacking the normalization term bottleneck

o Data-parallel approach

One host, shared memory (“SMP”)
Each processor computes

Suffers from lock contention

Asynchronous version: lock-free parameter updates (cf.
Hogwild)

]

© © ©

o Parameter-parallel approach

Attacking the normalization term bottleneck

o Data-parallel approach

One host, shared memory (“SMP”)
Each processor computes

Suffers from lock contention

Asynchronous version: lock-free parameter updates (cf.
Hogwild)

]

© © ©

o Parameter-parallel approach
o Multiple hosts, distributed memory

Attacking the normalization term bottleneck

o Data-parallel approach

One host, shared memory (“SMP”)
Each processor computes

Suffers from lock contention

Asynchronous version: lock-free parameter updates (cf.
Hogwild)

]

© © ©

o Parameter-parallel approach
o Multiple hosts, distributed memory
o Each host computes all network operations up to, and
excluding, the softmax.

Attacking the normalization term bottleneck

o Data-parallel approach
One host, shared memory (“SMP”)
Each processor computes
Suffers from lock contention
Asynchronous version: lock-free parameter updates (cf.
Hogwild)
o Parameter-parallel approach
o Multiple hosts, distributed memory
o Each host computes all network operations up to, and

excluding, the softmax.
o The unnormalized outputs are shared across hosts

]

© © ©

Attacking the normalization term bottleneck

o Data-parallel approach
One host, shared memory (“SMP”)
Each processor computes
Suffers from lock contention
Asynchronous version: lock-free parameter updates (cf.
Hogwild)
o Parameter-parallel approach
o Multiple hosts, distributed memory
o Each host computes all network operations up to, and
excluding, the softmax.

o The unnormalized outputs are shared across hosts
o The normalization term is computed centrally (via MPI).

]

© © ©

Discussion of results (Brown corpus)

n [¢ h | m | direct | mix | train. | valid. | test.
MLP1 5 50 | 60 | yes no 182 284 | 268
MLP2 5 50 | 60 | yes | yes 275 | 257
MLP3 5 0] 60| yes no 201 327 | 310
MLP4 5 0|60 | yes | yes 286 | 272
MLP5 5 50 | 30 | yes no 209 296 | 279
MLP6 5 50|30 | yes | yes 273 | 259
MLP7 3 50 | 30 | yes no 210 309 | 293
MLP8 3 50 [30 | yes | yes 284 | 270
MLP9 5 100 | 30 | no no 175 280 | 276
MLPI10 5 100 | 30 [no yes 265 | 252
Del. Int. 3 31 352 | 336
Kneser-Ney back-off | 3 334 | 323
Kneser-Ney back-off | 4 332 | 321
Kneser-Ney back-off | 5 332 | 321
class-based back-off | 3 150 348 | 334
class-based back-off | 3 | 200 354 | 340
class-based back-off | 3 | 500 326 | 312
class-based back-off | 3 | 1000 335 | 319
class-based back-off | 3 | 2000 343 | 326
class-based back-off | 4 | 500 327 | 312
class-based back-off | 5| 500 327 | 312

Discussion of results (AP News corpus)

n| h m | direct | mix | train. | valid. | test.
MLP10 6160 | 100 | yes | yes 104 | 109
Del. Int. 3 126 | 132
Back-off KN | 3 121 | 127
Back-off KN | 4 113 | 119
Back-off KN | 5 112 | 117

Recurrent neural networks

—> 813

Uy X¢

Ty = U(Wrecwt—l + Wiu; + b)

Vanishing and exploding gradients

o Deeper networks (e.g. long-range BPTT RNNs) exacerbate
this problem.

arXiv:1511.07053

Vanishing and exploding gradients

o Deeper networks (e.g. long-range BPTT RNNs) exacerbate
this problem.

o Sufficient condition for vanishing gradients: largest
eigenvalue of W is < 1.

arXiv:1511.07053

Vanishing and exploding gradients

o Deeper networks (e.g. long-range BPTT RNNs) exacerbate
this problem.

o Sufficient condition for vanishing gradients: largest
eigenvalue of W is < 1.

o Necessary condition for exploding gradients: largest
eigenvalue is > 1.

arXiv:1511.07053

Vanishing and exploding gradients

o Deeper networks (e.g. long-range BPTT RNNs) exacerbate
this problem.

o Sufficient condition for vanishing gradients: largest
eigenvalue of W is < 1.

o Necessary condition for exploding gradients: largest
eigenvalue is > 1.

o Orthogonal initialization is common solution; “Exact
solutions to the nonlinear dynamics of learning in deep
linear neural networks”, Saxe et al,
https://arxiv.org/abs/1312.6120

arXiv:1511.07053

Recurrent neural network based language model

INPUT (t) OUTPUT (t)

— CONTEXT (t)

CONTEXT (t-1)

Discussion of results

Table 1: Performance of models on WSJ DEV set when increas-
ing size of training data.

| Model | #words | PPL | WER |
KN5LM 200K [336 | 16.4
KN5 LM + RNN 90/2 200K | 271 | 154
KN5 LM IM | 287 | 151
KN5 LM + RNN 90/2 IM | 225 | 140
KN5LM 64M | 221 | 135
KN5LM +RNN250/5 || 64M | 156 | 11.7

Discussion of results

Table 2: Comparison of various configurations of RNN LMs
and combinations with backoff models while using 6.4M words
in training data (WSJ DEV).

PPL WER
Model RNN | RNN+KN || RNN | RNN-+KN
KNS5 - baseline - 221 - 13.5
RNN 60/20 229 186 13.2 12.6
RNN 90/10 202 173 12.8 12.2
RNN 250/5 173 155 12.3 11.7
RNN 250/2 176 156 12.0 11.9
RNN 400/10 171 152 12.5 12.1
3xRNN static 151 143 11.6 11.3
3xRNN dynamic 128 121 11.3 11.1

Discussion of results

Table 3: Comparison of WSJ results obtained with various mod-
els. Note that RNN models are trained just on 6.4M words.

| Model || DEV WER | EVAL WER |
Lattice 1 best 12.9 18.4
Baseline - KN5 (37M) 12.2 17.2
Discriminative LM [8] (37M) 11.5 16.9
Joint LM [9] (70M) - 16.7
Static 3xRNN + KNS5 (37M) 11.0 15.5
Dynamic 3xRNN + KN5 (37M) 10.7 16.3*

Convolutional Language Models

Max pooling {

outputs Max pooling operation
—
Filter
outputs
Convolutional
filters
Input
embedding
Embedding
matrix

Embedding indices ——— 1 2 6 9

A oA oA A A, Mapping from

Character Convolutional Language Models

Character
convolutional
input
Character
embedding
matrix
Embedding indices ———» 1 2 6

Mapping from
T 1 <— characters to
Character inputs ————» Ci Ciy1 Civ2 indices

Generative neural networks are improving quickly

Hartebeest

Anemone Fish Parachute Screw

Deep language models are improving quickly

Varying the code of sentiment Varying the code of tense
this movie was awful and boring . this was one of the outstanding thrillers of the last decade
this movie was funny and touching . this is one of the outstanding thrillers of the all time

this will be one of the great thrillers of the all time
jackson is n’t very good with documentary

jackson is superb as a documentary productions i thought the movie was too bland and too much
i guess the movie is too bland and too much
you will regret it i guess the film will have been too bland

you will enjoy it

Table 3. Samples by varying one attribute code while fixing the others. Left column: each pair of sentences is generated by varying the
sentiment code while fixing the tense code and 2. Right column: each triple of sentences is generated by varying the tense code while
fixing the sentiment code and z.

Controllable text generation, Hu et al arXiv:1703.00955

https://arxiv.org/abs/1703.00955

Questions?

