7 Department of Computer Science

7 UNIVERSITY OF COLORADO BOULDER

Language Models

Advanced Machine Learning for NLP
Jordan Boyd-Graber

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 1of1

Roadmap

After this class, you'll be able to:

¢ Give examples of where we need language models

e Evaluate language models

e Connection between Bayesian nonparametrics and backoff

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 2of1

Language models

* Language models answer the question: How likely is a string of
English words good English?

Autocomplete on phones and websearch

e Creating English-looking documents

* Very common in machine translation systems
o Help with reordering / style

Pim(the house is small) > py(small the is house)
o Help with word choice

pim(l am going home) > pi,(I am going house)

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 3of1

Why language models?

¢ Like sorting for computer science
e Language models essential for many NLP applications

e Optimized for performance and runtime

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 4of1

N-Gram Language Models

e Given: a string of English words W = w,, w,, ws, ..., w,
* Question: whatis p(W)?

e Sparse data: Many good English sentences will not have been seen
before

— Decomposing p(W) using the chain rule:

p(wy, wo, ws, ..., w,) =

p(w) p(wo|wy) p(ws|wy, ws)... p(w,|wy, ws,...w,_)

(not much gained yet, p(w,|w, w,,...w,_;) is equally sparse)

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 5of1

Markov Chain

¢ Markov independence assumption:

o only previous history matters
o limited memory: only last k words are included in history
(older words less relevant)
— kth order Markov model

¢ For instance 2-gram language model:

p(wl’ W, Ws, ..., wn) & p(wl) P(W2|w1) P(W3|W2)P(wn|wn—1)

e What is conditioned on, here w;_; is called the history

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 6of1

How good is the LM?

¢ A good model assigns a text of real English W a high probability
¢ This can be also measured with perplexity

1

perplexity(W)=P(w;,...wy) ¥

N

1
_ N
UP(Wi|w1---Wi—1)

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 7of1

Comparison 1—4-Gram

word unigram | bigram | trigram | 4-gram

i 6.684 3.197 3.197 3.197
would 8.342 2.884 2.791 2.791
like 9.129 2.026 1.031 1.290

to 5.081 0.402 0.144 0.113
commend 15.487 | 12.335 8.794 8.633
the 3.885 1.402 1.084 0.880

reporter 10.840 7.319 2.763 2.350
. 4.896 | 3.020 1.785 1.510
</s> 4.828 | 0.005 0.000 0.000

average
perplexity | 265.136 | 16.817 | 6.206 | 4.758

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 8of1

Example: 3-Gram

e Counts for trigrams and estimated word probabilities
the red (total: 225)
word | c. | prob.

cross | 123 | 0.547
tape 31 | 0.138
army 9 0.040
card 7 0.031

, 5 0.022

o 225 trigrams in the Europarl corpus start with the red
o 123 of them end with cross
— maximum likelihood probability is % =0.547.

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 9of1

Example: 3-Gram

e Counts for trigrams and estimated word probabilities
the red (total: 225)
word | c. | prob.

cross | 123 | 0.547
tape 31 | 0.138
army 9 0.040
card 7 0.031

, 5 0.022

o 225 trigrams in the Europarl corpus start with the red
o 123 of them end with cross
— maximum likelihood probability is % =0.547.

e Can’t use ML estimate

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 9of1

How do we estimate a probability?

e Assuming a sparse Dirichlet prior, a <1 to each count
0. = it
! Zlc ng+ g

* @, is called a smoothing factor, a pseudocount, etc.

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 100f1

How do we estimate a probability?

e Assuming a sparse Dirichlet prior, a <1 to each count
0. = it
! Zlc ng+ g

* @, is called a smoothing factor, a pseudocount, etc.
* When a; =1 for all i, it's called “Laplace smoothing”

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 100f1

How do we estimate a probability?

e Assuming a sparse Dirichlet prior, a <1 to each count
0. = it
! Zlc ng+ g

a; is called a smoothing factor, a pseudocount, etc.

When a; =1 for all i, it's called “Laplace smoothing”

What is a good value for a?

Could be optimized on held-out set to find the “best” language model

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 100f1

Example: 2-Grams in Europarl

Count Adjusted count Test count

c (c+1) (c+a) t.

0 0.00378 | 0.00016 0.00016
1 0.00755 | 0.95725 0.46235
2 0.01133 | 1.91433 1.39946
3 0.01511 | 2.87141 2.34307
4 0.01888 | 3.82850 3.35202
5 0.02266 | 4.78558 4.35234
6 0.02644 | 5.74266 5.33762
8 0.03399 | 7.65683 7.15074
10 0.04155 | 9.57100 9.11927
20 0.07931 | 19.14183 | 18.95948

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 110of1

Example: 2-Grams in Europarl

Count Adjusted count Test count
c (c+1) (c+a) t.
0.00378 | 0.00016 0.00016
0.00755 | 0.95725 0.46235
0.01133 | 1.91433 1.39946
0.01511 | 2.87141 2.34307
0.01888 | 3.82850 3.35202

AWM= |O

Can we do better?

In higher-order models, we can learn from similar contexts!
8 0.03399 | 7.65683 7.15074

10 0.04155 | 9.57100 9.11927
20 0.07931 | 19.14183 | 18.95948

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 110f1

Back-Off

* In given corpus, we may never observe

o Scottish beer drinkers
o Scottish beer eaters

* Both have count 0

— our smoothing methods will assign them same probability
e Better: backoff to bigrams:

o beer drinkers
o beer eaters

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 120f1

Interpolation

¢ Higher and lower order n-gram models have different strengths and

weaknesses

o high-order n-grams are sensitive to more context, but have sparse
counts

o low-order n-grams consider only very limited context, but have robust
counts

e Combine them

prlwslwy, wy)= Ay pr(ws)
+ A2 po(ws|w,)
+ A3 ps(ws|wy, wy)

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 13of1

Back-Off

¢ Trust the highest order language model that contains n-gram

BO
p, (Wil Wi_pg1s e Wig) =
Ap(Wilwi—py1, .y Wi—1)

if count,, (W;_p41,..., w;) >0

BO
Ap(Wi—ps1) w0 Win1) Py (Wil Wiy, oo, Wiy)

else

* Requires
o adjusted prediction model a,,(w;|w;_,41,--» Wi_1)
o discounting function d,(wy,..., w,_1)

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 140f1

What’s a word?

e There are an infinite number of words

o Possible to develop generative story of how new words are created
o Bayesian non-parametrics

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 150f1

What’s a word?

e There are an infinite number of words

o Possible to develop generative story of how new words are created
o Bayesian non-parametrics

¢ Defining a vocabulary (the event space)

e But how do you handle words outside of your vocabulary?

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 150f1

What’s a word?

e There are an infinite number of words

o Possible to develop generative story of how new words are created
o Bayesian non-parametrics

Defining a vocabulary (the event space)

But how do you handle words outside of your vocabulary?

o Ignore? You could win just by ignoring everything
o Standard: replace with <UNK> token

Next week: word representations!

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 150f1

Reducing Vocabulary Size

e For instance: each number is treated as a separate token
¢ Replace them with a number token num
o but: we want our language model to prefer

Pim(l pay 950.00 in May 2007) > pi,(1 pay 2007 in May 950.00)

o not possible with number token

pim(l pay num in May num) = p,(I pay num in May num)

* Replace each digit (with unique symbol, e.g., @ or 5), retain some
distinctions

Pim(l pay 555.55 in May 5555) > p,(l pay 5555 in May 555.55)

Advanced Machine Learning for NLP | Boyd-Graber Language Models | 160f1

