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Roadmap

After this class, you’ll be able to:

• Give examples of where we need language models

• Evaluate language models

• Connection between Bayesian nonparametrics and backoff
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Language models

• Language models answer the question: How likely is a string of
English words good English?

• Autocomplete on phones and websearch

• Creating English-looking documents

• Very common in machine translation systems

◦ Help with reordering / style

plm(the house is small)> plm(small the is house)

◦ Help with word choice

plm(I am going home)> plm(I am going house)
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Why language models?

• Like sorting for computer science

• Language models essential for many NLP applications

• Optimized for performance and runtime
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N-Gram Language Models

• Given: a string of English words W =w1, w2, w3, ..., wn

• Question: what is p (W )?
• Sparse data: Many good English sentences will not have been seen

before

→ Decomposing p (W ) using the chain rule:

p (w1, w2, w3, ..., wn ) =

p (w1) p (w2|w1) p (w3|w1, w2) . . . p (wn |w1, w2, ...wn−1)

(not much gained yet, p (wn |w1, w2, ...wn−1) is equally sparse)
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Markov Chain

• Markov independence assumption:

◦ only previous history matters
◦ limited memory: only last k words are included in history

(older words less relevant)
→ k th order Markov model

• For instance 2-gram language model:

p (w1, w2, w3, ..., wn )' p (w1) p (w2|w1) p (w3|w2)...p (wn |wn−1)

• What is conditioned on, here wi−1 is called the history
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How good is the LM?

• A good model assigns a text of real English W a high probability

• This can be also measured with perplexity

perplexity(W ) = P (w1, . . . wN )
− 1
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P (wi |w1 . . . wi−1)
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Comparison 1–4-Gram

word unigram bigram trigram 4-gram

i 6.684 3.197 3.197 3.197
would 8.342 2.884 2.791 2.791

like 9.129 2.026 1.031 1.290
to 5.081 0.402 0.144 0.113

commend 15.487 12.335 8.794 8.633
the 3.885 1.402 1.084 0.880

reporter 10.840 7.319 2.763 2.350
. 4.896 3.020 1.785 1.510

</s> 4.828 0.005 0.000 0.000

average
perplexity 265.136 16.817 6.206 4.758
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Example: 3-Gram

• Counts for trigrams and estimated word probabilities

the red (total: 225)

word c. prob.

cross 123 0.547
tape 31 0.138
army 9 0.040
card 7 0.031

, 5 0.022

◦ 225 trigrams in the Europarl corpus start with the red
◦ 123 of them end with cross
→ maximum likelihood probability is 123

225 = 0.547.

• Can’t use ML estimate
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How do we estimate a probability?

• Assuming a sparse Dirichlet prior, α< 1 to each count

θi =
ni +αi
∑

k nk +αk
(1)

• αi is called a smoothing factor, a pseudocount, etc.

• When αi = 1 for all i , it’s called “Laplace smoothing”

• What is a good value for α?

• Could be optimized on held-out set to find the “best” language model
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Example: 2-Grams in Europarl

Count Adjusted count Test count
c (c +1) (c +α) tc

0 0.00378 0.00016 0.00016
1 0.00755 0.95725 0.46235
2 0.01133 1.91433 1.39946
3 0.01511 2.87141 2.34307
4 0.01888 3.82850 3.35202
5 0.02266 4.78558 4.35234
6 0.02644 5.74266 5.33762
8 0.03399 7.65683 7.15074
10 0.04155 9.57100 9.11927
20 0.07931 19.14183 18.95948

• Add-α smoothing with α= 0.00017

• tc are average counts of n-grams in test set that occurred c times in
corpus

Can we do better?
In higher-order models, we can learn from similar contexts!
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Back-Off

• In given corpus, we may never observe

◦ Scottish beer drinkers
◦ Scottish beer eaters

• Both have count 0

→ our smoothing methods will assign them same probability

• Better: backoff to bigrams:

◦ beer drinkers
◦ beer eaters
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Interpolation

• Higher and lower order n-gram models have different strengths and
weaknesses

◦ high-order n-grams are sensitive to more context, but have sparse
counts

◦ low-order n-grams consider only very limited context, but have robust
counts

• Combine them

pI (w3|w1, w2) = λ1 p1(w3)

+λ2 p2(w3|w2)

+λ3 p3(w3|w1, w2)
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Back-Off

• Trust the highest order language model that contains n-gram

p B O
n (wi |wi−n+1, ..., wi−1) =

=























αn (wi |wi−n+1, ..., wi−1)

if countn (wi−n+1, ..., wi )> 0

dn (wi−n+1, ..., wi−1) p B O
n−1(wi |wi−n+2, ..., wi−1)

else

• Requires

◦ adjusted prediction model αn (wi |wi−n+1, ..., wi−1)
◦ discounting function dn (w1, ..., wn−1)
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What’s a word?

• There are an infinite number of words

◦ Possible to develop generative story of how new words are created
◦ Bayesian non-parametrics

• Defining a vocabulary (the event space)

• But how do you handle words outside of your vocabulary?

◦ Ignore? You could win just by ignoring everything
◦ Standard: replace with <UNK> token

• Next week: word representations!
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Reducing Vocabulary Size

• For instance: each number is treated as a separate token

• Replace them with a number token num
◦ but: we want our language model to prefer

plm(I pay 950.00 in May 2007)> plm(I pay 2007 in May 950.00)

◦ not possible with number token

plm(I pay num in May num) = plm(I pay num in May num)

• Replace each digit (with unique symbol, e.g., @ or 5), retain some
distinctions

plm(I pay 555.55 in May 5555)> plm(I pay 5555 in May 555.55)
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