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Representations

e Last couple of weeks: probabilistic representations
e Today: combining with supervised response

(e}

Rating of a product

o Movie review

Vote on bill

Percentage of people who retweet a tweet

o Percentage of people consider a comment “extreme”

o

o

* More advanced represenatations:

o Multiple langauges
o Hierarchy

Advanced Machine Learning for NLP | Boyd-Graber Supervised Topic Models | 20f6



Conceptual Approach

ist
Text m Counts Response

Advanced Machine Learning for NLP | Boyd-Graber Supervised Topic Models | 3o0f6



Conceptual Approach

.-
Text m Counts Response

As "The Last
Airbender" bores
and alienates its
audiences,
consider the
opportunities
missed here. |
close with the
hope that the title
proves prophetic.
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Conceptual Approach

Text m List Prediction
Counts

Positive
As "The Last - e
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Similar to social science methodology LIWC
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Conceptual Approach
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Positive
As "The Last - .
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opportunities —
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Technical g |

¢ Assumption: We can create representation from documents in any
language
* Observation: Once we have representation, underlying language

=l LES 44
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What if we don’t know the representation?
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Putting Pieces Together

* How do we learn the representation?

* How do ensure that the word lists reflect sentiment?

* How do make the word lists make sense across languages?
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Putting Pieces Together

* How do we learn the representation?
o Topic Models

e How do ensure that the word lists reflect sentiment?
o Supervised Topic Models

* How do make the word lists make sense across languages?
o Semantic Resources
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Why do this?

Topic models embed documents in low dimensional space

e These spaces are often useful for prediction

But not designed for it!

¢ Can we use different objective functions to optimize embedding

Understanding interplay between
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Overview of today

e Supervised topic models
¢ Using multiple languages
¢ Hierarchical non-parametric models
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