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Clustering as Probabilistic Inference

• Last time: representation from probabilistic model

• Today, starting with Gaussian Mixture Model:

◦ Means
◦ Assignments
◦ (Variances)

• Bayesian Nonparametrics: Corresponds to representation in unbounded
space
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Nonparametric Clustering

• What if the number of clusters is not fixed?

• Nonparametric: can grow if data need it

• Probabilistic distribution over number of clusters
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Dirichlet Process

• Distribution over distributions

• Parameterized by: α,G

• Concentration parameter

• Base distribution

• You can then draw observations from x ∼DP(α,G ).
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Defining a DP

• Break off sticks

V1, V2, · · · ∼iid Beta(1,α) (1)

Ck ≡Vk

k−1
∏

j=1

(1−Vk ) (2)

• Draw atoms
Φ1,Φ2, · · · ∼iid G (3)

• Merge into complete distribution

Θ =
∑

k

CkδΦk
(4)
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Properties of a DPMM

• Expected value is the same as base distribution

EDP(α,G ) [x ] =EG [x ] (5)

• As α→∞, DP(α,G ) =G

• Number of components unbounded

• Impossible to represent fully on computer (truncation)

• You can nest DPs
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Effect of scaling parameter α
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DP as mixture Model
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The Chinese Restaurant as a Distribution

To generate an observation, you first sit down at a table. You sit down at a
table proportional to the number of people sitting at the table.

2
7

3
7

2
7

x ∼µ1 x ∼µ2 x ∼µ3

But this is just Maximum Likelihood

Why are we talking about Chinese Restaurants?
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Always can squeeze in one more table . . .

• The posterior of a DP is CRP

• A new observation has a new table / cluster with probability proportional
to α

• But this must be balanced against the probability of an observation
given a cluster

Θ =
∑

k

CkδΦk
(6)
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Gibbs Sampling

• We want to know the cluster assignment of each observation

• Take a random guess initially

• This provides a mean for each cluster

• Let the number of clusters grow
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Gibbs Sampling

• We want to know the cluster assignment of each observation (tables)

• Take a random guess initially
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Gibbs Sampling

• We want to know ~z

• Compute p (zi |z1 . . . zi−1, zi+1, . . . zm , x ,α,G )
• Update zi by sampling from that distribution

• Keep going . . .

Notation

p (zi = k |z−i )≡ p (zi |z1 . . . zi−1, zi+1, . . . zm ) (7)
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Gibbs Sampling for DPMM

p (zi = k | ~z−i , ~x ,{θk },α) (8)

(9)
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Gibbs Sampling for DPMM

p (zi = k | ~z−i , ~x ,{θk },α) (8)

=p (zi = k | ~z−i , xi , ~x ,θk ,α) (9)

(10)

Dropping irrelevant terms
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Gibbs Sampling for DPMM

p (zi = k | ~z−i , ~x ,{θk },α) (8)

=p (zi = k | ~z−i , xi , ~x ,θk ,α) (9)

=p (zi = k | ~z−i ,α)p (xi |θk , ~x ) (10)

(11)

Chain rule
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Gibbs Sampling for DPMM

p (zi = k | ~z−i , ~x ,{θk },α) (8)

=p (zi = k | ~z−i , xi , ~x ,θk ,α) (9)

=p (zi = k | ~z−i ,α)p (xi |θk , ~x ) (10)

=

¨
�

nk
n·+α

�

∫

θ
p (xi |θ )p (θ |G , ~x ) existing

α
n·+α

∫

θ
p (xi |θ )p (θ |G ) new

(11)

(12)

Applying CRP
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=

¨
�

nk
n·+α

�

N
�

x , n x̄
n+1 ,1

�

existing
α

n·+αN (x , 0,1) new
(12)

Scary integrals assuming G is normal distribution with mean zero and unit
variance. (Derived in optional reading.)
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Algorithm for Gibbs Sampling

1 Random initial assignment to clusters

2 For iteration i :

1 “Unassign” observation n
2 Choose new cluster for that observation
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