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Learning the Hidden Space

e Two major tools:

o Gibbs Sampling: Easier to implement, easier to understand
o Variational Inference: faster, harder to implement

e Variational shows the connections to “deep” models better, so it’s the
focus

* However, would be injustice to not at least discuss Gibbs sampling
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Inference

e We are interested in posterior distribution

p(Z1X,0) (1)
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Inference

e We are interested in posterior distribution

p(Z1X,0) (1)

* Here, latent variables are topic assignments z and topics 0. X is the
words (divided into documents), and © are hyperparameters to Dirichlet
distributions: « for topic proportion, A for topics.

pz,B,0lw,a,7) (@)
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Gibbs Sampling

e A form of Markov Chain Monte Carlo
¢ Chain is a sequence of random variable states

e Given a state {z,...zx} given certain technical conditions, drawing
zip ~plz1,... 221, Zks1, - - - 2| X, ©) for all k (repeatedly) results in a
Markov Chain whose stationary distribution is the posterior.

e For notational convenience, call z with z; , removed z_ ,,
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Gibbs Sampling

e For LDA, we will sample the topic assignments
¢ Thus, we want:

p(zd,n = k’z—d,nlw’a) A)
p(z—d,nlw!ar A)

p(Zd,n = k|z—d,nr w’a)l) =
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Gibbs Sampling

e For LDA, we will sample the topic assignments
¢ Thus, we want:

p(zdn kz dnlwa}t)

=k : A
P(zan=klz_qnw a )= p(z_qnlw,a,A)

* The topics and per-document topic proportions are integrated out /
marginalized

* Let ng,; be the number of words taking topic i in document d. Let vy ,,
be the number of times word w is used in topic k.

fad(nzyék a+ndi_1)9ak+ndkd9dfﬂ (Hl#wdn l+vkl )ﬁl+vkwdn ﬂk

kwd

fgd (l_[ 90( +nd,—1)d9dfﬁk(l—[ ﬂ)k itk i— )dﬂk
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Gibbs Sampling

¢ Integral is normalizer of Dirichlet distribution

A-H/kl l_[ r(ﬂt"‘”lm)
f (I—[ﬁ ) P (Z, ﬂi"‘vk,i)
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Gibbs Sampling

¢ Integral is normalizer of Dirichlet distribution

A+Ukl l_[ r(ﬂl+ykl)
J (I—[ﬁ ) W= (Z, ﬂi+vk,i)

* So we can simplify

f ( a,+nd,,-71)9ak+nd}kd0 f ( Awk, )ﬁl i+Vkwy , 4Pk
04 i#k d Br i#Wq,n k,wa,n

fed(l_[ 0u+nd, )dgdfﬂk(n ﬁ)t+vk, )dﬁk

r(ak-i-nd‘k-i-l) K T F(Awd'n + Uk,wd,,, +1) 1% r(xr +
F(ZtK a;+ng;+ 1) H#k (ak * nd'k) F(Z:/ A+ + l] H#w‘l'” ( k Uk'wd'")

[ (e + ng,i) I 1(Ai + v i)

r(ZlK Qa; +nd,,-) W
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¢ Integral is normalizer of Dirichlet distribution
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Gamma Function Identity
_D(z+1)
- I(2)

e Tl na) e T, T )
15 0@ + 1a,1) I/ (A + vgi)
F(Zf a;+ nd,,-) F(Z,Y Ait Vk,i)
Rar+0c Vkwg, g,
B Zf{ Ngi+a; Vit
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Gibbs Sampling Equation

Mg+ 0k Vkwg, ¥ Aw,,
K
> naita; D VkitAi

e Number of times document d uses topic k

* Number of times topic k uses word type wy ,,

e Dirichlet parameter for document to topic distribution
e Dirichlet parameter for topic to word distribution

e How much this document likes topic k

* How much this topic likes word wy ,
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Sample Document

Etruscan

trade

price

temple

market
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Randomly Assign Topics

SYIE 2 1 3 1
/W\ Etruscan | trade price temple | market
\\”/J
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Randomly Assign Topics

SV E 2 1 3 1

/| Etruscan

trade price temple | market

Italy temple ship trade market
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Total Topic Counts

3 2 1 3 1
Etruscan | trade price temple | market
1 2 3
Etruscan 1 0 35
Total market 50 0 1
counts — [
from all price 42 1 0
docs temple 0 0 20
trade 10 8 1
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We want to sample this word ...

3 2 1 3 1
Etruscan }«fade price temple | market
1 2 3
Etruscan 1 0 35
market 50 0 1
price 42 1 0
temple 0 0 20
trade 10 8 1
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We want to sample this word ...

3 ) 2 1 3 1
Etruscan//trade price temple | market
/ 1 2 3
Etruscan 1 0 35
market 50 0 1
price 42 1 0
temple 0 0 20
trade 10 8 1

\
\
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Decrement its count

3 ? 1 3 1
Etruscan | trade price temple | market
1 2 3
Etruscan 1 0 35
market 50 0 1
price 42 1 0
temple 0 0 20
trade 10 7 1
\
\
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What is the conditional distribution for this topic?

3 ? 1 3 1

Etruscan | trade price temple | market
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Part 1: How much does this document like each topic?

3

1

Etruscan

trade

price

temple

market
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Part 1: How much does this document like each topic?

3 ? 1 3 1
Etruscan | trade price temple | market
Topic 1 Topic 2 Topic 3
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Part 2: How much does each topic like the word?

3 ? 1 3 1
Etruscan | trade price temple | market
Topic 1 Topic 2 Topic 3

1 2 3
trade 10 7 1
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|LIdUC ‘ J.U‘ I‘ J.|
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Geometric interpretation

3 ? 1 3 1
Etruscan | trade price temple | market
Topic 1 Topic 2 Topic 3
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Geometric interpretation
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L
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Update counts

3 ? 1 3 1
Etruscan | trade price temple | market
1 2 3
Etruscan 1 0 35
market 50 0 1
price 42 1 0
temple 0 0 20
trade 10 7 1
\
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Update counts

3 1 1 3 1
Etruscan /éade price temple | market

/ 1 2 3
Etruscan 1 35

0
market 50 0 1
price 42 1 0
temple 0 0 20
trade 11 7 1
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Update counts

3 1 1 3 1
Etruscan | trade price temple | market
T0p|c 1 Topic 2 Topic 3
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Details: how to sample from a distribution

Topic 1
/V
Ndk+ 0k Viwg, T Awg, .
S K g+ 2 Vii T A > Topic 2
Topic 3
Topic 4
Topic 5

SZI[eWwIoN

0.0
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Algorithm
@ For each iteration i:
@ For each document d and word 7 currently assigned to z,;4:

© Decrement ng,,,, and vz, w,,
® Sample z,.,, = k with probability proportional to

N+ Vewgn g,
SKngita; i Vkithi
® Incrementn,; , and v,
r“new new:»

Wa,n
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Implementation

Algorithm
© For each iteration i:
© For each document d and word 7 currently assigned to z,;,:

@ Decrement ng . ,, and Vzo1a:Wan
® Sample z,,,,, = k with probability proportional to

Na et @i Vewantrug,
SK naita; 2 Vkithi

1

© Increment ng ., ., and v, . ow,,
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Desiderata

e Hyperparameters: Sample them too (slice sampling)

Initialization: Random

Sampling: Until likelihood converges

Lag / burn-in: Difference of opinion on this

Number of chains: Should do more than one
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Available implementations

e Mallet (http://mallet.cs.umass.edu)
e LDAC (http://www.cs.princeton.edu/ blei/lda-c)
e Topicmod (http://code.google.com/p/topicmod)
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