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Learning the Hidden Space

• Two major tools:

◦ Gibbs Sampling: Easier to implement, easier to understand
◦ Variational Inference: faster, harder to implement

• Variational shows the connections to “deep” models better, so it’s the
focus

• However, would be injustice to not at least discuss Gibbs sampling

Advanced Machine Learning for NLP | Boyd-Graber Topic Models | 2 of 1



Inference

• We are interested in posterior distribution

p (Z |X ,Θ) (1)

• Here, latent variables are topic assignments z and topics θ . X is the
words (divided into documents), and Θ are hyperparameters to Dirichlet
distributions: α for topic proportion, λ for topics.

p (z ,β ,θ |w ,α,λ) (2)

p (w , z ,θ ,β |α,λ) =
∏

k

p (βk |λ)
∏

d

p (θd |α)
∏

n

p (zd ,n |θd )p (wd ,n |βzd ,n
)
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Gibbs Sampling

• A form of Markov Chain Monte Carlo

• Chain is a sequence of random variable states

• Given a state {z1, . . . zN } given certain technical conditions, drawing
zk ∼ p (z1, . . . zk−1, zk+1, . . . zN |X ,Θ) for all k (repeatedly) results in a
Markov Chain whose stationary distribution is the posterior.

• For notational convenience, call z with zd ,n removed z −d ,n
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Inference

Hollywood studios are preparing to let people 

download and buy electronic copies of movies over 

the Internet, much as record labels now sell songs for 

99 cents through Apple Computer's iTunes music store 

and other online services ...

computer, 
technology, 

system, 
service, site, 

phone, 
internet, 
machine

play, film, 
movie, theater, 

production, 
star, director, 

stage

sell, sale, 
store, product, 

business, 
advertising, 

market, 
consumer
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Gibbs Sampling

• For LDA, we will sample the topic assignments
• Thus, we want:

p (zd ,n = k |z −d ,n , w ,α,λ) =
p (zd ,n = k , z −d ,n |w ,α,λ)

p (z −d ,n |w ,α,λ)

• The topics and per-document topic proportions are integrated out /
marginalized

• Let nd ,i be the number of words taking topic i in document d . Let vk ,w

be the number of times word w is used in topic k .

=

∫

θd

�

∏

i 6=k θ
αi+nd ,i−1
d

�

θ
αk+nd ,k

d dθd

∫

βk

�

∏

i 6=wd ,n
β
λi+vk ,i−1
k ,i

�

β
λi+vk ,wd ,n

k ,wd ,n
dβk

∫

θd

�

∏

i θ
αi+nd ,i−1
d

�

dθd

∫

βk

�

∏

i β
λi+vk ,i−1
k ,i

�

dβk
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Gibbs Sampling

• Integral is normalizer of Dirichlet distribution
∫

βk

�

∏

i

β
λi+vk ,i−1
k ,i

�

dβk =

∏V
i Γ

�

βi + vk ,i

�

Γ
�

∑V
i βi + vk ,i

�

• So we can simplify
∫

θd

�

∏

i 6=k θ
αi+nd ,i−1
d

�

θ
αk+nd ,k
d dθd

∫

βk

�

∏

i 6=wd ,n
β
λi+vk ,i−1
k ,i

�

β
λi+vk ,wd ,n

dβk

k ,wd ,n
∫

θd

�

∏

i θ
αi+nd ,i−1
d

�

dθd

∫

βk

�

∏

i β
λi+vk ,i−1
k ,i

�

dβk

=

Γ (αk +nd ,k +1)
Γ

�
∑K

i αi +nd ,i +1
�

∏K
i 6=k Γ

�

αk +nd ,k

�

∏K
i Γ (αi +nd ,i )

Γ

�
∑K

i αi +nd ,i

�

Γ
�

λwd ,n
+ vk ,wd ,n

+1
�

Γ

�
∑V

i λi + vk ,i +1
�

∏V
i 6=wd ,n

Γ
�

λk + vk ,wd ,n

�

∏V
i Γ

�

λi + vk ,i
�

Γ

�
∑V

i λi + vk ,i

�
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Gamma Function Identity

z =
Γ (z +1)
Γ (z )

(3)

Γ (αk +nd ,k +1)
Γ

�
∑K

i αi +nd ,i +1
�

∏K
i 6=k Γ

�

αk +nd ,k

�

∏K
i Γ (αi +nd ,i )

Γ

�
∑K

i αi +nd ,i

�

Γ
�

λwd ,n
+ vk ,wd ,n

+1
�

Γ

�
∑V

i λi + vk ,i +1
�

∏V
i 6=wd ,n

Γ
�

λk + vk ,wd ,n

�

∏V
i Γ

�

λi + vk ,i
�

Γ

�
∑V

i λi + vk ,i

�

=
nd ,k +αk

∑K
i nd ,i +αi

vk ,wd ,n
+λwd ,n

∑

i vk ,i +λi
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Gibbs Sampling Equation

nd ,k +αk
∑K

i nd ,i +αi

vk ,wd ,n
+λwd ,n

∑

i vk ,i +λi
(4)

• Number of times document d uses topic k

• Number of times topic k uses word type wd ,n

• Dirichlet parameter for document to topic distribution

• Dirichlet parameter for topic to word distribution

• How much this document likes topic k

• How much this topic likes word wd ,n
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Sample Document
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Sample Document

Advanced Machine Learning for NLP | Boyd-Graber Topic Models | 11 of 1



Randomly Assign Topics
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Randomly Assign Topics
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Total Topic Counts

Sampling Equation

nd ,k +αk
∑K

i nd ,i +αi

vk ,wd ,n
+λwd ,n

∑

i vk ,i +λi
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We want to sample this word . . .
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We want to sample this word . . .
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Decrement its count
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What is the conditional distribution for this topic?
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Part 1: How much does this document like each topic?
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Part 1: How much does this document like each topic?

Sampling Equation

nd ,k +αk
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Part 2: How much does each topic like the word?

Sampling Equation

nd ,k +αk
∑K

i nd ,i +αi

vk ,wd ,n
+λwd ,n

∑

i vk ,i +λi
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Geometric interpretation
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Geometric interpretation
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Geometric interpretation

Advanced Machine Learning for NLP | Boyd-Graber Topic Models | 21 of 1



Update counts
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Update counts
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Update counts
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Details: how to sample from a distribution

Topic 1

Topic 2

Topic 3

Topic 4

Topic 5

QK
i 6=k � (↵i + nd ,i )

�(↵k+nd,k+1)
�(

PK
i ↵i+nd,i+1)

QK
i �(↵i+nd,i)

�(
PK

i ↵i+nd,i)

QV
i 6=wd,n

� (�i + vk,i )
�
⇣
�k+vk,wd,n

+1
⌘

�(
PV

i �i+vk,i+1)
QV

i �(�i+vk,i)
�(

PV
i �i+vk,i)

=
nd ,k + ↵kPK
i nd ,i + ↵i

vk,wd,n
+ �wd,nP

i vk,i + �i

Gamma Function Identity

z =
�(z + 1)

�(z)
(6)

N
orm

alize

0.0

1.0

0.112
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Algorithm

1 For each iteration i :

1 For each document d and word n currently assigned to zo l d :

1 Decrement nd ,zo l d
and vzo l d ,wd ,n

2 Sample zne w = k with probability proportional to
nd ,k+αk

∑K
i nd ,i+αi

vk ,wd ,n
+λwd ,n

∑

i vk ,i+λi

3 Increment nd ,zne w
and vzne w ,wd ,n
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Implementation

Algorithm

1 For each iteration i :

1 For each document d and word n currently assigned to zo l d :

1 Decrement nd ,zo l d
and vzo l d ,wd ,n

2 Sample zne w = k with probability proportional to
nd ,k+αk

∑K
i nd ,i+αi

vk ,wd ,n
+λwd ,n

∑

i vk ,i+λi

3 Increment nd ,zne w
and vzne w ,wd ,n
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Desiderata

• Hyperparameters: Sample them too (slice sampling)

• Initialization: Random

• Sampling: Until likelihood converges

• Lag / burn-in: Difference of opinion on this

• Number of chains: Should do more than one
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Available implementations

• Mallet (http://mallet.cs.umass.edu)

• LDAC (http://www.cs.princeton.edu/ blei/lda-c)

• Topicmod (http://code.google.com/p/topicmod)
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