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Low-Dimensional Space for Documents

Last time: embedding space for words

This time: embedding space for documents
e Generative story

* New inference techniques
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Why topic models?

® Suppose you have a huge number of
documents

¢ Want to know what’s going on

e Can’'t read them all (e.g. every New
York Times article from the 90’s)

¢ Topic models offer a way to get a
corpus-level view of major themes
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documents

¢ Want to know what’s going on

e Can’'t read them all (e.g. every New
York Times article from the 90’s)

¢ Topic models offer a way to get a
corpus-level view of major themes

¢ Unsupervised
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Roadmap

e What are topic models

* How to go from raw data to topics
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Embedding Space

From an input corpus and number of topics K — words to topics

Corpus
Forget the Bootleg, Just |
Multiplex Heralded As
The Shape of Cinema

Stock Trades: A Better Deal
The three big Internet

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens
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Embedding Space

From an input corpus and number of topics K — words to topics

TOPIC 3

TOPIC 1

computer,
technology,
system,
service, site,
phone,
internet,
machine

TOPIC 2

sell, sale,
store, product,
business,
advertising,
market,
consumer
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Conceptual Approach

e For each document, what topics are expressed by that document?

The three big Internet
portals begin to distinguish
among th Ives as
shopping malls

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

Stock Trades: A Better Deal
For Investors Isn't Simple

TOPIC 1 TOPIC 2

Multiplex Heralded As
Linchpin To Growth

TOPIC 3
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Topics from Science

human evolution disease computer
genome evolutionary host models
dna species bacteria information
genetic organisms diseases data
genes life resistance computers
sequence origin bacterial system
gene biology new network
molecular groups strains systems
sequencing  phylogenetic control model
map living infectious parallel
information diversity malaria methods
genetics group parasite networks
mapping new parasites software
project two united new
sequences common tuberculosis simulations
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Why should you care?

* Neat way to explore / understand corpus collections
o E-discovery
o Social media
o Scientific data

NLP Applications

o Word Sense Disambiguation
o Discourse Segmentation

o Machine Translation

Psychology: word meaning, polysemy

¢ Inference is (relatively) simple
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Matrix Factorization Approach

M x K x[ KxV MxV

Topics

L
n

Topic Assignment Dataset

K Number of topics
M Number of documents

V Size of vocabulary
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Matrix Factorization Approach

M x K x[ KxV :|z M x V

Topics
Topic Assignment Dataset
* If you use singular value
K Number of topics decomposition (SVD), this
M Number of documents technique is called latent semantic
analysis.

V Size of vocabulary
e Popular in information retrieval.
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Alternative: Generative Model

* How your data came to be
e Sequence of Probabilistic Steps

* Posterior Inference
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Alternative: Generative Model

* How your data came to be
e Sequence of Probabilistic Steps

Posterior Inference
Blei, Ng, Jordan. Latent Dirichlet Allocation. JMLR, 2003.

Advanced Machine Learning for NLP | Boyd-Graber Topic Models | 100of 1



Multinomial Distribution

e Distribution over discrete outcomes

* Represented by non-negative vector that sums to one

¢ Picture representation

(1,0,0) (0,0,1) (0,1,0)
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Multinomial Distribution

e Distribution over discrete outcomes

* Represented by non-negative vector that sums to one

¢ Picture representation
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e Come from a Dirichlet distribution
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Dirichlet Distribution

_ F(Zk O(mk) amg-1
P(PW'")—m ) Pk
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Dirichlet Distribution

F( amy) amg-1
[T M(ami) L1

P(ploam) =

Wi
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Dirichlet Distribution

P(ploam) =

r‘(Xlk amy) l—[ amg—1
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Dirichlet Distribution

alpha=(0.2,0.1,0.1)
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Dirichlet Distribution

° If @ ~Dir((a), w ~Mult(()¢), and n; = {w; : w; = k}| then

p(@la,w) o< p(w|g)p(p|a) (1)
o< Jom] o= @)
k k
oc l_[ ¢ak+nk—l 3)
k

e Conjugacy: this posterior has the same form as the prior
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e Conjugacy: this posterior has the same form as the prior
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Generative Model

TOPIC 1

TOPIC 2

TOPIC 3

computer,
technology,
system,
service, site,
phone,
internet,
machine

sell, sale,
store, product,
business,
advertising,
market,
consumer
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Generative Model

The three big Internet
portals begin to distinguish
among as
shopping malls

Stock Trades: A Better Deal
For Investors Isn't Simple

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

TOPIC 1 TOPIC 2

Forget the Bootleg, Just
Download the Movie Legally

Multiplex Heralded As
Linchpin To Growth

TOPIC 3
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Generative Model

computer,
technpolo Sl et
= Stemgy’ store, product,
ser\ilice site BuiEss:
hor;e ’ advertising,
'p ; market,
internet,
p consumer
machine

Hollywood studios are preparing to let people
download and buy electronic copies of movies over
the Internet, much as record labels now sell songs for

99 cents through Apple Computer's iTunes music store

and other online services ...
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Generative Model

computer,
p sell, sale,
technology,
— store, product,
Y : business,
service, site, L
p—— advertising,
'p ; market,
internet,
p consumer
machine

Hol@fmreparing to let people

download and buy electronic copies of movies over
the Internet, much as record labels now sell songs for

99 cents through Apple Computer's iTunes music store

and other online services ...
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Generative Model
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Generative Model

computer,
technpolo Sl et
= stemgyy store, product,
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P : market,
internet,
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Generative Model Approach

),

e For each topic k €{1,..., K}, draw a multinomial distribution B from a
Dirichlet distribution with parameter A
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Generative Model Approach

O
(e M

e For each topic k €{1,..., K}, draw a multinomial distribution B from a
Dirichlet distribution with parameter A

e For each document d €{1,..., M}, draw a multinomial distribution 8,
from a Dirichlet distribution with parameter o
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Generative Model Approach

e,
Dol @,

e For each topic k €{1,..., K}, draw a multinomial distribution B from a
Dirichlet distribution with parameter A

e For each document d €{1,..., M}, draw a multinomial distribution 8,
from a Dirichlet distribution with parameter o

e For each word position n € {1,..., N}, select a hidden topic z,, from the
multinomial distribution parameterized by 8.
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Generative Model Approach

(D)@,

e For each topic k €{1,..., K}, draw a multinomial distribution B from a
Dirichlet distribution with parameter A

e For each document d €{1,..., M}, draw a multinomial distribution 8,
from a Dirichlet distribution with parameter o

e For each word position n € {1,..., N}, select a hidden topic z,, from the
multinomial distribution parameterized by 8.

* Choose the observed word w,, from the distribution 3, .
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Topic Models: What’s Important

¢ Topic models
o Topics to word types—multinomial distribution
o Documents to topics—multinomial distribution
* Focus in this talk: statistical methods

o Model: story of how your data came to be
o Latent variables: missing pieces of your story
o Statistical inference: filling in those missing pieces

¢ We use latent Dirichlet allocation (LDA), a fully Bayesian version of
pLSlI, probabilistic version of LSA
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Topic Models: What’s Important

¢ Topic models (latent variables)
o Topics to word types—multinomial distribution
o Documents to topics—multinomial distribution
e Focus in this talk: statistical methods

o Model: story of how your data came to be
o Latent variables: missing pieces of your story
o Statistical inference: filling in those missing pieces

¢ We use latent Dirichlet allocation (LDA), a fully Bayesian version of
pLSlI, probabilistic version of LSA
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