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What’s wrong with PMI?

• PMI-based methods prefer rare words

• E.g., closest to “king”

• Jeongjo (Koryo), Adulyadej (Chakri), Coretta (MLK)

• Hard to scale

• Doesn’t work as well?
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Hyperparameters Matter

• Preprocessing (word2vec)

◦ Dynamic Context Windows
◦ Subsampling
◦ Deleting Rare Words

• Postprocessing (GloVe)

◦ Adding Context Vectors

• Association Metric (SGNS)

◦ Shifted PMI
◦ Context Distribution Smoothing
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Dynamic Context Windows
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Adding Context Vectors

• Skip-Gram Negative Sampling creates word vectors w

• . . . and context vectors c

• Pennington et al. (2014) use w + c to represent word

• Levy et al. (2015) find that data size and preprocessing account for
most (if not all) of difference
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Smoothing

• Introduced in word2vec for negative sampling (α= 0.75)

P̂α(c) =
#(c)α
∑

c′#(c)α
(1)

• For PMI, helps remove bias toward rare words

• And makes it about as good as word2vec
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Rant on Evaluation

• Analogy and Similarity aren’t that useful

• Find a real-world task and optimize for that

• Innovation is still possible

• Just getting better word vectors is a fruitless cottage industry

• Always tune baseline hyperparameters (and recognize what the
hyperparameters are)
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Other Languages are Harder
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Takeaway

• Word representations very important

• Future: continuous representations in more complicated models

• Future: document representations
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