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How do we set the feature weights?

Goal is to minimize errors

Want to reward features that lead to right answers

Penalize features that lead to wrong answers

Problem: predictions are correlated
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Perceptron Algorithm

e Rather than just counting up how often we see events?
e We’'ll use this for intuition in 2D case
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Perceptron Algorithm

|7V1 — 6
:fort—1...T do
Receive x;
Ve — sgn(; - %)
Receive y;
if J; # y; then

Wi — Wi+ yi%
else

N
Wip1 &= Wy
return wr_ 4
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Binary to Structure

binary perceptron
(Rosenblatt, 1959)

. . 2 classes update weights
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Binary to Structure

multiclass perceptron
(Freund/Schapire, 1999)
constant ¥
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Binary to Structure

structured perceptron
(Collins, 2002)

‘the man bit the dog|
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Generic Perceptron

e perceptron is the simplest machine learning algorithm
¢ online-learning: one example at a time
e |learning by doing

o find the best output under the current weights

o update weights at mistakes
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2D Example

Initially, weight vector is zero:
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Observation 1

=
- . x; =(=2,2) 2)
¥1=0 3)
yi=+1 (4)
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Update 1

Wipq — W+ Y% (5)
|7|/2 — (6)
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Update 1

—
S

Wipq e W+ yiX
W, — (0,0) + (—2,2)

—_ =
J e
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Update 1

—
S

Wipq e W+ yiX
W, — (0,0) + (—2,2)
|7/2 = <_2’2>

—_ =
J e
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Observation 2
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Observation 2

¥ a o o Xo :<_2, _3> (8)
" Jo=+44+—-6=—2 (9
Yo=—1 (10)
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Update 2

|7VH_1 — |7V[ (11)
iy — (12)
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Update 2

Wi pq — Wy (11)
Wy — (—2,2) (12)
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Update 2

WFH — |7Vt (1 1)
Wy — (—2,2) (12)

Advanced Machine Learning for NLP | Boyd-Graber Language is Hard: Structure and Predictions (Description) | 110f1



Observation 3
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Observation 3

Js=—4+-—2=—6 (15)
ya=-+1 (16
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Update 3

Wipq — W+ Y% (17)
W3 (18)
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Update 3

Wipq — W+ Y% (17)
s — (—2,2) + (2,—1) (18)
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Update 3

Wipq — W+ Y% (17)
s — (—2,2) + (2,—1) (18)
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Observation 4
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Observation 4

-+
. . xe=(1,—4)  (20)
+ Jo=—a (@)
yp =1 (22)
| |
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Update 4

Wy — (23)
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Update 4

|7V4 — |7|/3 (23)
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Update 4

l7V4 — |7|/3 (23)
W, = (0,1) (24)
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Observation 5

. X =(2,2)  (25)
&= V5 =2 (26)
Ys=-+1 (27)
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Update 5

g — (28)
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Update 5

W — Wy (28)
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Update 5

W — Wy (28)
s = (0,1) (29)
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Observation 6

. xs=(2,2)  (30)

Yo =+1 (32)
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Update 6

g — (33)
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Update 6

W — Ws (33)
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Update 6

l7V6 — |7|/5 (33)
s = (0,1) (34)
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Structured Perceptron

[DT NN VBD DT NN

the man bit the dog .

inference

update weights

Xi

DT NN NN DT NN

~
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Perceptron Algorithm

Inputs: Training set (z;,y;)fori=1...n
Initialization: W=0
Define: F(z) = argmax,ccen) B(z,y) - W
Algorithm: Fort=1...T,i=1...n

z = F(z;)

If (2 # ;) WW + ®(z;,y;) — (x5, 2;)

Output: Parameters W
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POS Example

® gold-standard: DT NN DT NN Y
. (, )

® the man bit the dog T

® current output: DT NN NN DT NN z
° the man bit the dog T (z,2)

® assume only two feature classes

® tag bigrams til | i

® word/tag pairs Wi
® weights ++: (NN,VBD) (VBD,DT) (VBD—*bit
® weights ——: (NN, NN NN,DT NN — bit
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