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POS Tagging: Task Definition

• Annotate each word in a sentence with a part-of-speech marker.

• Lowest level of syntactic analysis.
John saw the saw and decided to take it to the table
NNP VBD DT NN CC VBD TO VB PRP IN DT NN
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Typical Features (φ)

Assume K parts of speech, a lexicon size of V , a series of observations
{x1, . . . ,xN}, and a series of unobserved states {z1, . . . ,zN}.

π Start state scores (vector of length K ): πi

θ Transition matrix (matrix of size K by K ): θi ,j

β An emission matrix (matrix of size K by V ): βj ,w
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i
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Total score of hypothesis z given input x
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Assume K parts of speech, a lexicon size of V , a series of observations
{x1, . . . ,xN}, and a series of unobserved states {z1, . . . ,zN}.
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f (x ,z)≡
∑
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wiφi(x ,z) (1)

Feature present (binary)
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{x1, . . . ,xN}, and a series of unobserved states {z1, . . . ,zN}.
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θ Transition matrix (matrix of size K by K ): θi ,j

β An emission matrix (matrix of size K by V ): βj ,w

Score

f (x ,z)≡
∑

i

wiφi(x ,z) (1)

Two problems: How do we move from data to algorithm? (Estimation) How
do we move from a model and unlabled data to labeled data? (Inference)
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Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . ,xL}, we want to find
a sequence {z1 . . .zL} with the highest score.

• It’s impossible to compute K L possibilities.

• So, we use dynamic programming to compute most likely tags for each
token subsequence from 0 to t that ends in state k .

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
f1(k) =πk +βk ,xi

(2)

• Recursion:
fn(k) =max

j

�

fn−1(j)+θj ,k

�

+βk ,xn
(3)
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• The complexity of this is now K 2L.

• In class: example that shows why you need all O(KL) table cells
(garden pathing)

• But just computing the max isn’t enough. We also have to remember
where we came from. (Breadcrumbs from best previous state.)

Ψn = argmaxj fn−1(j)+θj ,k (4)

• Let’s do that for the sentence “come and get it”
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POS πk βk ,x1
f1(k)

MOD log0.234 log0.024 -5.18
DET log0.234 log0.032 -4.89

CONJ log0.234 log0.024 -5.18
N log0.021 log0.016 -7.99

PREP log0.021 log0.024 -7.59
PRO log0.021 log0.016 -7.99

V log0.234 log0.121 -3.56
come and get it (with HMM probabilities)

Why logarithms?

1 More interpretable than a float with lots of zeros.

2 Underflow is less of an issue

3 Generalizes to linear models (next!)

4 Addition is cheaper than multiplication

log(ab) = log(a)+ log(b) (5)

Advanced Machine Learning for NLP | Boyd-Graber Why Language is Hard: Structure and Predictions | 6 of 1



POS f1(j)

f1(j)+θj ,CONJ

f2(CONJ)
MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47 ??? -6.02

N -7.99

≤−7.99

PREP -7.59

≤−7.59

PRO -7.99

≤−7.99

V -3.56

-5.21

come and get it

f0(V)+θV, CONJ = f0(k)+θV, CONJ =−3.56+−1.65

log f1(k) =−5.21+βCONJ, and =

−5.21−0.64
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POS f1(k) f2(k) b2 f3(k) b3 f4(k) b4

MOD -5.18

-0.00 X -0.00 X -0.00 X

DET -4.89

-0.00 X -0.00 X -0.00 X

CONJ -5.18 -6.02 V

-0.00 X -0.00 X

N -7.99

-0.00 X -0.00 X -0.00 X

PREP -7.59

-0.00 X -0.00 X -0.00 X

PRO -7.99

-0.00 X -0.00 X -14.6 V

V -3.56

-0.00 X -9.03 CONJ -0.00 X

WORD come and get it
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