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Motivation

PAC learning: distribution fixed over time (training and test), 11D
assumption.
On-line learning:

no distributional assumption.

worst-case analysis (adversarial).

mixed training and test.

Performance measure: mistake model, regret.
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General Online Setting

Fort=1to T:

Get instance x; € X
Predict y, € Y

Get true label y; € Y
Incur loss L(¥t, yt)

Classification: 'Y = {0,1}, L(y,y") = |y — y|
Regression: Y C R, L(y,y’) = (y' — y)?
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General Online Setting

Fort=1to T:

Get instance x; € X
Predict y, € Y

Get true label y; € Y
Incur loss L(¥t, yt)

Classification: 'Y = {0,1}, L(y,y") = |y — y|
Regression: Y C R, L(y,y’) = (y' — y)?
Objective: Minimize total loss >, L(J¢, yt)
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Plan

Experts
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Prediction with Expert Advice

Fort=1to T:
Get instance x; € X and advice a;, i € Y,i € [1, N]
Predict y; € Y
Get true label y; € Y
Incur loss L(P¢, yt)
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Prediction with Expert Advice

Fort=1to T:

Get instance x; € X and advice a;, i € Y,i € [1,N]

Predict y; € Y

Get true label y; € Y

Incur loss L(P¢, yt)
Objective: Minimize regret, i.e., difference of total loss vs. best
expert

Regret(T) =Y " L(Jt, y:) — min > L(ar, ye) (1)
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Mistake Bound Model

Define the maximum number of mistakes a learning algorithm L
makes to learn a concept ¢ over any set of examples (until it's
perfect).

Mi(c) = max |mistakes(L, c)| (2)

Xi5ee0XT

For any concept class C, this is the max over concepts c.

M (C) = max M, (c) (3)

ceC
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Mistake Bound Model

Define the maximum number of mistakes a learning algorithm L
makes to learn a concept ¢ over any set of examples (until it's
perfect).

Mi(c) = max |mistakes(L, c)| (2)

X1yeeesXT

For any concept class C, this is the max over concepts c.

M (C) = max M, (c) (3)

ceC

In the expert advice case, assumes some expert matches the
concept (realizable)
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Halving Algorithm

H1 — H;
fort«< 1...T do
Receive x¢;
Vi < Majority(Hy, a, xt);
Receive y;;
if y; # y: then
‘ Hip1 < {a€ He:a(xe) =y}

return Hr g
Algorithm 1: The Halving Algorithm (Mitchell, 1997)
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Halving Algorithm Bound (Littlestone, 1998)

For a finite hypothesis set

MHaIving(H) <lg|H| (4)

After each mistake, the hypothesis set is reduced by at least by half
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Halving Algorithm Bound (Littlestone, 1998)

For a finite hypothesis set

MHaIving(H) <lg|H| (4)

After each mistake, the hypothesis set is reduced by at least by half
Consider the optimal mistake bound opt(H). Then

VC(H) < opt(H) < Mpjaiyingqrn < '8 1H| (5)

For a fully shattered set, form a binary tree of mistakes with height
VC(H)
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Halving Algorithm Bound (Littlestone, 1998)

For a finite hypothesis set

MHaIving(H) <lg|H| (4)

After each mistake, the hypothesis set is reduced by at least by half
Consider the optimal mistake bound opt(H). Then

VC(H) < opt(H) < Mpjaiyingqrn < '8 1H| (5)

For a fully shattered set, form a binary tree of mistakes with height
VC(H)

What about non-realizable case?
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Weighted Majority (Littlestone and Warmuth, 1998)

fort«+1...N do

wyj < 1
fort<1...T do Weights for every expert
Receive xi; Classifications in favor of
g 1 [Zyt_,:l we =Y, _owel: side with higher total
Receive y:: ' ' weight (y € {0,1})
if y: # y: then Experts that are wrong
fort < 1...N do get their weights
if 9: # y; then decreased (S € [0,1])
Wept,i < BWei; If you're right, you stay
else unchanged
| Wig1,i < Wi

return wr;
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fort«+1...N do

Wy < 1;
fort < 1...T do Weights for every expert
Receive xi; Classifications in favor of
P 1 {ny,,:l we =Y, _owel: side with higher total
Receive y:: ' weight (y € {0,1})
if y: # y: then Experts that are wrong
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fort«+1...N do

Wy < 1;
fort < 1...T do Weights for every expert
Receive xi; Classifications in favor of
g 1 [Zyt_,:l we =Y, _owel: side with higher total
Receive y:: ' ' weight (y € {0,1})
if y: # y: then Experts that are wrong
fort < 1...N do get their weights
if 9+ # y; then decreased (8 € [0,1])
Wept,i < BWei; If you're right, you stay
else unchanged
| Wig1,i < Wi
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Weighted Majority (Littlestone and Warmuth, 1998)

fort«+1...N do

wy i< 1,
fort < 1...T do Weights for every expert
Receive x; Classifications in favor of
g 1 [Zyt_,:l we =Y, _owel: side with higher total
Receive y;: ' ' weight (y € {0,1})
if ¥ # y: then Experts that are wrong
fort < 1...N do get their weights
if 9+ # y; then decreased (8 € [0, 1])
Wil < Bwei; If you're right, you stay
else unchanged
| Wig1,i < Wi

return wr;

Jordan Boyd-Graber |  Boulder Online Learning | 9 of 31



Weighted Majority

Let m; be the number of mistakes made by WM until time t

Let m; be the best expert's mistakes until time t

log N + mj Iog%

mg S 2
log 735

Thus, mistake bound is O(log N) plus the best expert
Halving algorithm 5 =10
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Proof: Potential Function

Potential function is the sum of all weights
th = Z Wt,i (7)
i

We'll create sandwich of upper and lower bounds
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Proof: Potential Function

Potential function is the sum of all weights
th = Z Wt,i (7)
i

We'll create sandwich of upper and lower bounds

For any expert i, we have lower bound

S > wy = 5mt’i (8)
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Proof: Potential Function

Potential function is the sum of all weights
o, = Z Wt i (7)

We'll create sandwich of upper and lower bounds

For any expert i, we have lower bound
O > wej = pm (8)

Weights are nonnegative, so ) . Wy > Wy

Online Learning |

11 of 31



Proof: Potential Function

Potential function is the sum of all weights
o, = Z Wy, i (7)
i

We'll create sandwich of upper and lower bounds
For any expert i, we have lower bound

b > wy = /Bmt’i (8)

Each error multiplicatively reduces weight by
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Proof: Potential Function (Upper Bound)

If an algorithm makes an error at round t

6P,
® et
t+1 < 2 o 5 (9)
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Proof: Potential Function (Upper Bound)

If an algorithm makes an error at round t

6P,
® oty P
t+1 < 2 L+ 5 (9)

Half (at most) of the experts by weight were right
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Proof: Potential Function (Upper Bound)

If an algorithm makes an error at round t

B8P,
® ot P
t+1 < 2 F 5 (9)

Half (at least) of the experts by weight were wrong
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Proof: Potential Function (Upper Bound)

If an algorithm makes an error at round t

b, p[o, 1+5
G < —4+ == """\
t+1 S + 5 [ 5 t (9)
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Proof: Potential Function (Upper Bound)

If an algorithm makes an error at round t

Bo.  [1+8
e i

Initially potential function sums all weights, which start at 1

¢;=N (10)
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Proof: Potential Function (Upper Bound)

If an algorithm makes an error at round t

pP; 1+5
) < — +— = )
1S 5 L4 5 5 t (9)
Initially potential function sums all weights, which start at 1
d1=N (10)
After mt mistakes after T rounds
1 mr
O < [;ﬂ N (11)
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Weighted Majority Proof

Put the two inequalities together, using the best expert

BT < by < [ﬁg]m N (12)
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Weighted Majority Proof

Put the two inequalities together, using the best expert

mt
B < &7 < [”25] N

Take the log of both sides

1
mTlog f < log N + mt log [;6] (13)
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Weighted Majority Proof

Put the two inequalities together, using the best expert

BT < by < [ﬁg]m N (12)

Take the log of both sides

1
mTlog f < log N + mt log [;6]

Solve for mt
log N + m% log %

g | 25

mt <
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Weighted Majority Recap

Simple algorithm
No harsh assumptions (non-realizable)
Depends on best learner

Downside: Takes a long time to do well in worst case (but okay in
practice)

Solution: Randomization
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Plan

Perceptron Algorithm
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Perceptron Algorithm

Online algorithm for classification
Very similar to logistic regression (but 0/1 loss)

But what can we prove?
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Perceptron Algorithm

VVl — 6;
fort«< 1...T do
Receive x;;
Ve < sgn(wy - X¢);
Receive y;;
if ¥+ # y: then

‘ Werl <= Wi + YiXe;
else

‘ Wil < W,

return wrq
Algorithm 2: Perceptron Algorithm (Rosenblatt, 1958)
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Objective Function

Optimizes
1 -
?Zmax (0, =ye(W - xt)) (15)
t

Convex but not differentiable
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Margin and Errors

If there's a good margin p,
e ° you'll converge quickly
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Margin and Errors

If there's a good margin p,
you'll converge quickly
Whenever you se an error, you
move the classifier to get it
right

Convergence only possible if
data are separable
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How many errors does Perceptron make?

If your data are in a R ball and there is a margin

yt(v')?t) (16)

p<
[[v]]

for some V, then the number of mistakes is bounded by R?/p?
The places where you make an error are support vectors

Convergence can be slow for small margins

20 of 31
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Plan

Online Perceptron for Structure Learning
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Binary to Structure

binary perceptron
(Rosenblatt, 1959)
x x x = exact

¢ ¢, lclasses inference updin:e vidliiz
S . * * e e— if y FZ
° ® L]
B
y=+1 y=1
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Binary to Structure

multiclass perceptron

(Freund/Schapire, 1999) !
constant ¥ el ’ update weights
DUBOBGEAABN o \ i)/ =5

y
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Binary to Structure

structured perceptron
(Collins, 2002)

‘the man bit the dog|

B A ® T

x

¥

exponential
# of classes

hard

"y

exact
inference

L-
/

update weights
ify=z
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Generic Perceptron

perceptron is the simplest machine learning algorithm
online-learning: one example at a time
learning by doing

find the best output under the current weights

update weights at mistakes
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Structured Perceptron

[DT NN VBD DT NN

the man bit the dog '

update weights
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Perceptron Algorithm

Inputs: Training set (z;,y;) fori=1...n
Initialization: W=0
Define: F(z) = argmax,cceng) B(z,y) - W
Algorithm: Fort=1...T,i=1...n

z = F(z;)

If (Zi :/é ya) W—W + @(a’:i-yi) — @(xi,zi)

Output: Parameters W
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POS Example

® gold-standard: DT NN DT NN y
. (z,v)

° the man bit the dog T

® current output: DT NN NN DT NN z
° the man bit the dog T (z,2)

® assume only two feature classes

® tag bigrams t i

® word/tag pairs Wi
® weights ++: (NN,VBD) (VBD,DT) (VBD—*bit
® weights ——: (NN, NN NN,DT NN — bit

26 of 31
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What must be true?

Finding highest scoring structure must be really fast (you'll do it
often)

Requires some sort of dynamic programming algorithm

For tagging: features must be local to y (but can be global to x)

® & & @ ®@ & @&
@ @ © @ @ 0 =
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Averaging is Good

Inputs:
Initialization:
Define:

Algorithm:

Output:

Training set (z;,y;)fori=1...n
W,=0
F(z) = argmax cceni) B(z,y) - W
Fort=1...T,i=1...n
2 = F(.’E,)
If (2 # i) V\{Hg—“f; + ®(z;, ;) — B(z4,2:)

Parameters W = Z W;
J
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Averaging is Good

d=1
20 + random (unnorm) _
last (unnorm)
avg (unnorm)
. ~—__ vote
10 1
5 L 4
0
0.1 1 10
Epoch
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Smoothing

Must include subset templates for features
For example, if you have feature (ty, wp, w_1), you must also have

(to, wo); (to, w—1); (wo, w_1)
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Inexact Search?

w
‘the man bit the dog‘ x x inexact z—>
* inference

[DT NN VBD DT NNl y ¥

Sometimes search is too hard

update weights

ify -z

So we use beam search instead

How to create algorithms that respect this relaxation: track when
right answer falls off the beam
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Wrapup

Structured prediction: when one label isn't enough
Generative models can help with not a lot of data

Discriminative models are state of the art
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Wrapup

Structured prediction: when one label isn't enough
Generative models can help with not a lot of data
Discriminative models are state of the art

More in Natural Language Processing (at least when | teach it)

Jordan Boyd-Graber | Boulder

Online Learning | 31 of 31



	Experts
	Perceptron Algorithm
	Online Perceptron for Structure Learning

