
Hidden Markov Models

Natural Language Processing: Jordan
Boyd-Graber
University of Colorado Boulder
LECTURE 20

Adapted from material by Ray Mooney

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 1 of 37

Roadmap

• Classification: labeling one thing at a time

• Sometimes context matters

• Sequence Labeling: Classification over a string

• Hidden Markov Models: Generative sequence labeling algorithm

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 2 of 37

Sequence Labeling Tasks

• When has a credit card been compromised?

• What’s the binding site of a protein?

• When are people sleeping (based on fitbits)?

• What is the part of speech of a word?

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 3 of 37

POS Tagging: Task Definition

• Annotate each word in a sentence with a part-of-speech marker.

• Lowest level of syntactic analysis.
John saw the saw and decided to take it to the table
NNP VBD DT NN CC VBD TO VB PRP IN DT NN

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 4 of 37

Tag Examples

• Noun (person, place or thing)
◦ Singular (NN): dog, fork
◦ Plural (NNS): dogs, forks
◦ Proper (NNP, NNPS): John, Springfields

• Personal pronoun (PRP): I, you, he, she, it

• Wh-pronoun (WP): who, what
• Verb (actions and processes)
◦ Base, infinitive (VB): eat
◦ Past tense (VBD): ate
◦ Gerund (VBG): eating
◦ Past participle (VBN): eaten
◦ Non 3rd person singular present tense (VBP): eat
◦ 3rd person singular present tense: (VBZ): eats
◦ Modal (MD): should, can
◦ To (TO): to (to eat)

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 5 of 37

Ambiguity

“Like” can be a verb or a preposition

• I like/VBP candy.

• Time flies like/IN an arrow.

“Around” can be a preposition, particle, or adverb

• I bought it at the shop around/IN the corner.

• I never got around/RP to getting a car.

• A new Prius costs around/RB $25K.

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 6 of 37

How hard is it?

• Usually assume a separate initial tokenization process that
separates and/or disambiguates punctuation, including detecting
sentence boundaries.

• Degree of ambiguity in English (based on Brown corpus)
◦ 11.5% of word types are ambiguous.
◦ 40% of word tokens are ambiguous.

• Average POS tagging disagreement amongst expert human judges
for the Penn treebank was 3.5%

• Based on correcting the output of an initial automated tagger,
which was deemed to be more accurate than tagging from scratch.

• Baseline: Picking the most frequent tag for each specific word type
gives about 90% accuracy 93.7% if use model for unknown words
for Penn Treebank tagset.

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 7 of 37

What about classification / feature engineering?

• Just predict the most frequent class

• 0.38 accuracy

• Can get to around 60% accuracy by adding in dictionaries, prefix /
suffix features

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 8 of 37

A more fundamental problem . . .

• Each classification is independent . . .

• This isn’t right!

• If you have a noun, it’s more likely to be preceeded by an adjective

• Determiners are followed by either a noun or an adjective

• Determiners don’t follow each other

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 9 of 37

Approaches

• Rule-Based: Human crafted rules based on lexical and other
linguistic knowledge.

• Learning-Based: Trained on human annotated corpora like the
Penn Treebank.
◦ Statistical models: Hidden Markov Model (HMM), Maximum Entropy

Markov Model (MEMM), Conditional Random Field (CRF)
◦ Rule learning: Transformation Based Learning (TBL)

• Generally, learning-based approaches have been found to be more
effective overall, taking into account the total amount of human
expertise and effort involved.

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 10 of 37

Approaches

• Rule-Based: Human crafted rules based on lexical and other
linguistic knowledge.

• Learning-Based: Trained on human annotated corpora like the
Penn Treebank.
◦ Statistical models: Hidden Markov Model (HMM), Maximum Entropy

Markov Model (MEMM), Conditional Random Field (CRF)
◦ Rule learning: Transformation Based Learning (TBL)

• Generally, learning-based approaches have been found to be more
effective overall, taking into account the total amount of human
expertise and effort involved.

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 10 of 37

HMM Intuition

Outline

HMM Intuition

HMM Recapitulation

HMM Estimation

Finding Tag Sequences

Viterbi Algorithm

EM Algorithm

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 11 of 37

HMM Intuition

HMM Definition

• A finite state machine with probabilistic state transitions.

• Makes Markov assumption that next state only depends on the
current state and independent of previous history.

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 12 of 37

HMM Intuition

Generative Model

• Probabilistic generative model for sequences.

• Assume an underlying set of hidden (unobserved) states in which
the model can be (e.g. parts of speech).

• Assume probabilistic transitions between states over time (e.g.
transition from POS to another POS as sequence is generated).

• Assume a probabilistic generation of tokens from states (e.g. words
generated for each POS).

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 13 of 37

HMM Intuition

Cartoon

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 14 of 37

HMM Intuition

Cartoon

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 14 of 37

HMM Recapitulation

Outline

HMM Intuition

HMM Recapitulation

HMM Estimation

Finding Tag Sequences

Viterbi Algorithm

EM Algorithm

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 15 of 37

HMM Recapitulation

HMM Definition

Assume K parts of speech, a lexicon size of V , a series of observations
{x1, . . . , xN}, and a series of unobserved states {z1, . . . , zN}.

π A distribution over start states (vector of length K):
πi = p(z1 = i)

θ Transition matrix (matrix of size K by K):
θi ,j = p(zn = j |zn−1 = i)

β An emission matrix (matrix of size K by V):
βj ,w = p(xn = w |zn = j)

Two problems: How do we move from data to a model? (Estimation)
How do we move from a model and unlabled data to labeled data?
(Inference)

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 16 of 37

HMM Recapitulation

HMM Definition

Assume K parts of speech, a lexicon size of V , a series of observations
{x1, . . . , xN}, and a series of unobserved states {z1, . . . , zN}.

π A distribution over start states (vector of length K):
πi = p(z1 = i)

θ Transition matrix (matrix of size K by K):
θi ,j = p(zn = j |zn−1 = i)

β An emission matrix (matrix of size K by V):
βj ,w = p(xn = w |zn = j)

Two problems: How do we move from data to a model? (Estimation)
How do we move from a model and unlabled data to labeled data?
(Inference)

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 16 of 37

HMM Estimation

Outline

HMM Intuition

HMM Recapitulation

HMM Estimation

Finding Tag Sequences

Viterbi Algorithm

EM Algorithm

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 17 of 37

HMM Estimation

Reminder: How do we estimate a probability?

• For a multinomial distribution (i.e. a discrete distribution, like over
words):

θi =
ni + αi∑
k nk + αk

(1)

• αi is called a smoothing factor, a pseudocount, etc.

• When αi = 1 for all i , it’s called “Laplace smoothing” and
corresponds to a uniform prior over all multinomial distributions.

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 18 of 37

HMM Estimation

Reminder: How do we estimate a probability?

• For a multinomial distribution (i.e. a discrete distribution, like over
words):

θi =
ni + αi∑
k nk + αk

(1)

• αi is called a smoothing factor, a pseudocount, etc.

• When αi = 1 for all i , it’s called “Laplace smoothing” and
corresponds to a uniform prior over all multinomial distributions.

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 18 of 37

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 19 of 37

HMM Estimation

Training Sentences

x here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 19 of 37

HMM Estimation

Training Sentences

x here come old flattop
z MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO V

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 19 of 37

HMM Estimation

Initial Probability π

POS Frequency Probability

MOD 1.1 0.234
DET 1.1 0.234

CONJ 1.1 0.234
N 0.1 0.021

PREP 0.1 0.021
PRO 0.1 0.021

V 1.1 0.234

Remember, we’re taking MAP estimates, so we add 0.1 (arbitrarily
chosen) to each of the counts before normalizing to create a
probability distribution. This is easy; one sentence starts with an
adjective, one with a determiner, one with a verb, and one with a
conjunction.

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 20 of 37

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 21 of 37

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 21 of 37

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 21 of 37

HMM Estimation

Transition Probability θ

• We can ignore the words; just look at the parts of speech. Let’s
compute one row, the row for verbs.

• We see the following transitions: V → MOD, V → CONJ, V → V,
V → PRO, and V → PRO

POS Frequency Probability

MOD 1.1 0.193
DET 0.1 0.018

CONJ 1.1 0.193
N 0.1 0.018

PREP 0.1 0.018
PRO 2.1 0.368

V 1.1 0.193

• And do the same for each part of speech ...

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 22 of 37

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 23 of 37

HMM Estimation

Training Sentences

here come old flattop
MOD V MOD N

a crowd of people stopped and stared
DET N PREP N V CONJ V

gotta get you into my life
V V PRO PREP PRO N

and I love her
CONJ PRO V PRO

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 23 of 37

HMM Estimation

Emission Probability β

Let’s look at verbs . . .
Word a and come crowd flattop

Frequency 0.1 0.1 1.1 0.1 0.1

Probability 0.0125 0.0125 0.1375 0.0125 0.0125

Word get gotta her here i

Frequency 1.1 1.1 0.1 0.1 0.1

Probability 0.1375 0.1375 0.0125 0.0125 0.0125

Word into it life love my

Frequency 0.1 0.1 0.1 1.1 0.1

Probability 0.0125 0.0125 0.0125 0.1375 0.0125

Word of old people stared stopped

Frequency 0.1 0.1 0.1 1.1 1.1

Probability 0.0125 0.0125 0.0125 0.1375 0.1375

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 24 of 37

HMM Estimation

Next time . . .

• Viterbi algorithm: dynamic algorithm discovering the most likely
pos sequence given a sentence

• em algorithm: what if we don’t have labeled data?

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 25 of 37

Finding Tag Sequences

Outline

HMM Intuition

HMM Recapitulation

HMM Estimation

Finding Tag Sequences

Viterbi Algorithm

EM Algorithm

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 26 of 37

Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , xL}, we want
to find a sequence {z1 . . . zL} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k.

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
δ1(k) = πkβk,xi (2)

• Recursion:
δn(k) = max

j
(δn−1(j)θj ,k)βk,xn (3)

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 27 of 37

Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , xL}, we want
to find a sequence {z1 . . . zL} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k.

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
δ1(k) = πkβk,xi (2)

• Recursion:
δn(k) = max

j
(δn−1(j)θj ,k)βk,xn (3)

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 27 of 37

Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , xL}, we want
to find a sequence {z1 . . . zL} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k.

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
δ1(k) = πkβk,xi (2)

• Recursion:
δn(k) = max

j
(δn−1(j)θj ,k)βk,xn (3)

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 27 of 37

Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , xL}, we want
to find a sequence {z1 . . . zL} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k.

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
δ1(k) = πkβk,xi (2)

• Recursion:
δn(k) = max

j
(δn−1(j)θj ,k)βk,xn (3)

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 27 of 37

Finding Tag Sequences

Viterbi Algorithm

• Given an unobserved sequence of length L, {x1, . . . , xL}, we want
to find a sequence {z1 . . . zL} with the highest probability.

• It’s impossible to compute KL possibilities.

• So, we use dynamic programming to compute most likely tags for
each token subsequence from 0 to t that ends in state k.

• Memoization: fill a table of solutions of sub-problems

• Solve larger problems by composing sub-solutions

• Base case:
δ1(k) = πkβk,xi (2)

• Recursion:
δn(k) = max

j
(δn−1(j)θj ,k)βk,xn (3)

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 27 of 37

Finding Tag Sequences

• The complexity of this is now K 2L.

• In class: example that shows why you need all O(KL) table cells
(garden pathing)

• But just computing the max isn’t enough. We also have to
remember where we came from. (Breadcrumbs from best previous
state.)

Ψn = argmaxjδn−1(j)θj ,k (4)

• Let’s do that for the sentence “come and get it”

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 28 of 37

Finding Tag Sequences

• The complexity of this is now K 2L.

• In class: example that shows why you need all O(KL) table cells
(garden pathing)

• But just computing the max isn’t enough. We also have to
remember where we came from. (Breadcrumbs from best previous
state.)

Ψn = argmaxjδn−1(j)θj ,k (4)

• Let’s do that for the sentence “come and get it”

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 28 of 37

Viterbi Algorithm

Outline

HMM Intuition

HMM Recapitulation

HMM Estimation

Finding Tag Sequences

Viterbi Algorithm

EM Algorithm

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 29 of 37

Viterbi Algorithm

POS πk βk,x1 log δ1(k)

MOD 0.234 0.024 -5.18
DET 0.234 0.032 -4.89

CONJ 0.234 0.024 -5.18
N 0.021 0.016 -7.99

PREP 0.021 0.024 -7.59
PRO 0.021 0.016 -7.99

V 0.234 0.121 -3.56

come and get it

Why logarithms?

1. More interpretable than a float with lots of zeros.

2. Underflow is less of an issue

3. Addition is cheaper than multiplication

log(ab) = log(a) + log(b) (5)

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 30 of 37

Viterbi Algorithm

POS log δ1(j)

log δ1(j)θj ,CONJ

log δ2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47 ??? -6.02

N -7.99

≤ −7.99

PREP -7.59

≤ −7.59

PRO -7.99

≤ −7.99

V -3.56

-5.21

come and get it

log
(
δ0(V)θV, CONJ

)
= log δ0(k) + log θV, CONJ = −3.56 +−1.65

log δ1(k) = −5.21− log βCONJ, and =

− 5.21− 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 31 of 37

Viterbi Algorithm

POS log δ1(j)

log δ1(j)θj ,CONJ

log δ2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

≤ −7.99

PREP -7.59

≤ −7.59

PRO -7.99

≤ −7.99

V -3.56

-5.21

come and get it

log
(
δ0(V)θV, CONJ

)
= log δ0(k) + log θV, CONJ = −3.56 +−1.65

log δ1(k) = −5.21− log βCONJ, and =

− 5.21− 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 31 of 37

Viterbi Algorithm

POS log δ1(j) log δ1(j)θj ,CONJ log δ2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

≤ −7.99

PREP -7.59

≤ −7.59

PRO -7.99

≤ −7.99

V -3.56

-5.21

come and get it

log
(
δ0(V)θV, CONJ

)
= log δ0(k) + log θV, CONJ = −3.56 +−1.65

log δ1(k) = −5.21− log βCONJ, and =

− 5.21− 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 31 of 37

Viterbi Algorithm

POS log δ1(j) log δ1(j)θj ,CONJ log δ2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

≤ −7.99

PREP -7.59

≤ −7.59

PRO -7.99

≤ −7.99

V -3.56

-5.21

come and get it

log
(
δ0(V)θV, CONJ

)
= log δ0(k) + log θV, CONJ = −3.56 +−1.65

log δ1(k) = −5.21− log βCONJ, and =

− 5.21− 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 31 of 37

Viterbi Algorithm

POS log δ1(j) log δ1(j)θj ,CONJ log δ2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99

≤ −7.99

PREP -7.59

≤ −7.59

PRO -7.99

≤ −7.99

V -3.56 -5.21

come and get it

log
(
δ0(V)θV, CONJ

)
= log δ0(k) + log θV, CONJ = −3.56 +−1.65

log δ1(k) = −5.21− log βCONJ, and =

− 5.21− 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 31 of 37

Viterbi Algorithm

POS log δ1(j) log δ1(j)θj ,CONJ log δ2(CONJ)

MOD -5.18

-8.48

DET -4.89

-7.72

CONJ -5.18

-8.47

???

-6.02

N -7.99 ≤ −7.99
PREP -7.59 ≤ −7.59
PRO -7.99 ≤ −7.99

V -3.56 -5.21

come and get it

log
(
δ0(V)θV, CONJ

)
= log δ0(k) + log θV, CONJ = −3.56 +−1.65

log δ1(k) = −5.21− log βCONJ, and =

− 5.21− 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 31 of 37

Viterbi Algorithm

POS log δ1(j) log δ1(j)θj ,CONJ log δ2(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72

CONJ -5.18 -8.47 ???

-6.02

N -7.99 ≤ −7.99
PREP -7.59 ≤ −7.59
PRO -7.99 ≤ −7.99

V -3.56 -5.21

come and get it

log
(
δ0(V)θV, CONJ

)
= log δ0(k) + log θV, CONJ = −3.56 +−1.65

log δ1(k) = −5.21− log βCONJ, and =

− 5.21− 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 31 of 37

Viterbi Algorithm

POS log δ1(j) log δ1(j)θj ,CONJ log δ2(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72

CONJ -5.18 -8.47 ???

-6.02

N -7.99 ≤ −7.99
PREP -7.59 ≤ −7.59
PRO -7.99 ≤ −7.99

V -3.56 -5.21

come and get it

log
(
δ0(V)θV, CONJ

)
= log δ0(k) + log θV, CONJ = −3.56 +−1.65

log δ1(k) = −5.21− log βCONJ, and =

− 5.21− 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 31 of 37

Viterbi Algorithm

POS log δ1(j) log δ1(j)θj ,CONJ log δ2(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72

CONJ -5.18 -8.47

??? -6.02

N -7.99 ≤ −7.99
PREP -7.59 ≤ −7.59
PRO -7.99 ≤ −7.99

V -3.56 -5.21

come and get it

log
(
δ0(V)θV, CONJ

)
= log δ0(k) + log θV, CONJ = −3.56 +−1.65

log δ1(k) = −5.21− log βCONJ, and =

− 5.21− 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 31 of 37

Viterbi Algorithm

POS log δ1(j) log δ1(j)θj ,CONJ log δ2(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72

CONJ -5.18 -8.47

??? -6.02

N -7.99 ≤ −7.99
PREP -7.59 ≤ −7.59
PRO -7.99 ≤ −7.99

V -3.56 -5.21

come and get it

log
(
δ0(V)θV, CONJ

)
= log δ0(k) + log θV, CONJ = −3.56 +−1.65

log δ1(k) = −5.21− log βCONJ, and = − 5.21− 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 31 of 37

Viterbi Algorithm

POS log δ1(j) log δ1(j)θj ,CONJ log δ2(CONJ)

MOD -5.18 -8.48
DET -4.89 -7.72

CONJ -5.18 -8.47

???

-6.02
N -7.99 ≤ −7.99

PREP -7.59 ≤ −7.59
PRO -7.99 ≤ −7.99

V -3.56 -5.21

come and get it

log
(
δ0(V)θV, CONJ

)
= log δ0(k) + log θV, CONJ = −3.56 +−1.65

log δ1(k) = −5.21− log βCONJ, and =

− 5.21− 0.64

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 31 of 37

Viterbi Algorithm

POS δ1(k) δ2(k) b2 δ3(k) b3 δ4(k) b4
MOD -5.18

-0.00 X -0.00 X -0.00 X

DET -4.89

-0.00 X -0.00 X -0.00 X

CONJ -5.18 -6.02 V

-0.00 X -0.00 X

N -7.99

-0.00 X -0.00 X -0.00 X

PREP -7.59

-0.00 X -0.00 X -0.00 X

PRO -7.99

-0.00 X -0.00 X -14.6 V

V -3.56

-0.00 X -9.03 CONJ -0.00 X

WORD come and get it

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 32 of 37

Viterbi Algorithm

POS δ1(k) δ2(k) b2 δ3(k) b3 δ4(k) b4
MOD -5.18 -0.00 X

-0.00 X -0.00 X

DET -4.89 -0.00 X

-0.00 X -0.00 X

CONJ -5.18 -6.02 V

-0.00 X -0.00 X

N -7.99 -0.00 X

-0.00 X -0.00 X

PREP -7.59 -0.00 X

-0.00 X -0.00 X

PRO -7.99 -0.00 X

-0.00 X -14.6 V

V -3.56 -0.00 X

-9.03 CONJ -0.00 X

WORD come and get it

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 32 of 37

Viterbi Algorithm

POS δ1(k) δ2(k) b2 δ3(k) b3 δ4(k) b4
MOD -5.18 -0.00 X -0.00 X

-0.00 X

DET -4.89 -0.00 X -0.00 X

-0.00 X

CONJ -5.18 -6.02 V -0.00 X

-0.00 X

N -7.99 -0.00 X -0.00 X

-0.00 X

PREP -7.59 -0.00 X -0.00 X

-0.00 X

PRO -7.99 -0.00 X -0.00 X

-14.6 V

V -3.56 -0.00 X -9.03 CONJ

-0.00 X

WORD come and get it

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 32 of 37

Viterbi Algorithm

POS δ1(k) δ2(k) b2 δ3(k) b3 δ4(k) b4
MOD -5.18 -0.00 X -0.00 X -0.00 X
DET -4.89 -0.00 X -0.00 X -0.00 X
CONJ -5.18 -6.02 V -0.00 X -0.00 X
N -7.99 -0.00 X -0.00 X -0.00 X

PREP -7.59 -0.00 X -0.00 X -0.00 X
PRO -7.99 -0.00 X -0.00 X -14.6 V
V -3.56 -0.00 X -9.03 CONJ -0.00 X

WORD come and get it

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 32 of 37

EM Algorithm

Outline

HMM Intuition

HMM Recapitulation

HMM Estimation

Finding Tag Sequences

Viterbi Algorithm

EM Algorithm

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 33 of 37

EM Algorithm

What if you don’t have training data?

• You can still learn a hmm

• Using a general technique called expectation maximization

◦ Take a guess at the parameters
◦ Figure out latent variables
◦ Find the parameters that best explain the latent variables
◦ Repeat

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 34 of 37

EM Algorithm

What if you don’t have training data?

• You can still learn a hmm

• Using a general technique called expectation maximization
◦ Take a guess at the parameters
◦ Figure out latent variables
◦ Find the parameters that best explain the latent variables
◦ Repeat

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 34 of 37

EM Algorithm

em for hmm

Model Parameters

We need to start with model parameters

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 35 of 37

EM Algorithm

em for hmm

Model Parameters

π, β, θ

We can initialize these any way we want

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 35 of 37

EM Algorithm

em for hmm

Model Parameters

E stepπ, β, θ

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 35 of 37

EM Algorithm

em for hmm

come and get it

Model Parameters Latent Variables

E stepπ, β, θ

We compute the E-step based on our data

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 35 of 37

EM Algorithm

em for hmm

V

C

P

come
V

C

P

and
V

C

P

get
V

C

P

it

Model Parameters Latent Variables

E stepπ, β, θ

Each word in our dataset could take any part of speech

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 35 of 37

EM Algorithm

em for hmm

come and get it

Model Parameters Latent Variables

E stepπ, β, θ

But we don’t know which state was used for each word

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 35 of 37

EM Algorithm

em for hmm

come and get it

Model Parameters Latent Variables

E stepπ, β, θ

Determine the probability of being in each latent state using Forward
/ Backward

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 35 of 37

EM Algorithm

em for hmm

come and get it

Model Parameters Latent Variables

E step

M step

π, β, θ

Calculate new parameters:

θi =
ni + αi∑

k Ep [nk] + αk
(6)

Where the expected counts are from the lattice

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 35 of 37

EM Algorithm

em for hmm

come and get it

π, β, θ

Model Parameters Latent Variables

E step

M step

π, β, θ

Replace old parameters (and start over)

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 35 of 37

EM Algorithm

Hard vs. Full EM

Hard EM

Train only on the most likely
sentence (Viterbi)

• Faster: E-step is faster

• Faster: Fewer iterations

Full EM

Compute probability of all possible
sequences

• More accurate: Doesn’t get
stuck in local optima as easily

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 36 of 37

EM Algorithm

Recap

• Generative model for sequence labeling

• With example of part of speech tagging

• Next time: discriminative sequence labeling

Natural Language Processing: Jordan Boyd-Graber | Boulder Hidden Markov Models | 37 of 37

	HMM Intuition
	HMM Recapitulation
	HMM Estimation
	Finding Tag Sequences
	Viterbi Algorithm
	EM Algorithm

