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Boulder Topic Models




Why topic models?

Suppose you have a huge number
of documents
Want to know what's going on

Can't read them all (e.g. every
New York Times article from the
90's)

Topic models offer a way to get a
corpus-level view of major themes
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Why topic models?

Suppose you have a huge number
of documents
Want to know what's going on

Can't read them all (e.g. every
New York Times article from the
90's)

Topic models offer a way to get a
corpus-level view of major themes

Unsupervised
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Roadmap

What are topic models
How to know if you have good topic model

How to go from raw data to topics
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Conceptual Approach

From an input corpus and number of topics K — words to topics

Corpus
Forget the Bootleg, Just |
Multiplex Heralded As
The Shape of Cinema.

Stock Trades: A Better Deal
The three big Internet

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens
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TOPIC 1

Conceptual Approach

computer,
technology,
system,
service, site,
phone,
internet,
machine

TOPIC 2

sell, sale,
store, product,
business,
advertising,
market,
consumer

From an input corpus and number of topics K — words to topics

TOPIC 3
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Conceptual Approach

For each document, what topics are expressed by that document?

The three big Internet
portals begin to distinguish
among th lves as
shopping malls

Red Light, Green Light: A
2-Tone L.E.D.to
Simplify Screens

Stock Trades: A Better Deal
For Investors Isn't Simple

TOPIC 1 TOPIC 2

Multiplex Heralded As
Linchpin To Growth

TOPIC 3
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Topics from Science

human evolution disease computer
genome evolutionary host, models
dna species bacteria information
genetic organisms diseases data
genes life resistance computers
sequence origin bacterial system
gene biology new network
molecular groups strains systems
sequencing  phylogenetic control model
map living, infectious parallel
information diversity malaria methods
genetics group parasite networks
mapping new parasites software
project two united new
sequences common tuberculosis simulations
Jordan Boyd-Graber Boulder

Topic Models



Why should you care?

Neat way to explore / understand corpus collections

E-discovery
Social media
Scientific data

NLP Applications

Word Sense Disambiguation
Discourse Segmentation
Machine Translation

Psychology: word meaning, polysemy

Inference is (relatively) simple
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Matrix Factorization Approach

Mx K| x KxV

Topics

MxV

u

Topic Assignment Dataset

Number of topics
Number of documents

Size of vocabulary
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Matrix Factorization Approach

M x K x[ KxV :|z MxV

Topics

Topic Assignment

Number of topics
Number of documents

Size of vocabulary

Dataset

If you use singular value
decomposition (SVD), this
technique is called latent
semantic analysis.

Popular in information retrieval

Boulder
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Alternative: Generative Model

How your data came to be
Sequence of Probabilistic Steps

Posterior Inference
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Alternative: Generative Model

How your data came to be

Sequence of Probabilistic Steps

Posterior Inference

Blei, Ng, Jordan. Latent Dirichlet Allocation. JMLR, 2003.
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Multinomial Distribution

Distribution over discrete outcomes

Represented by non-negative vector that sums to one

Picture representation

(1,0,0) 0,0,1) 0,1,0)
(O
Q
(1B1/3,/8)  (1/41/4,112)  (1/2,1/2,0)
(&)
(&)
Qo
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Multinomial Distribution

Distribution over discrete outcomes

Represented by non-negative vector that sums to one

Picture representation

(1,0,0) 0,0,1) 0,1,0)
(O
Q
(1B1/3,/8)  (1/41/4,112)  (1/2,1/2,0)
(&)
(&)
Qo

Come from a Dirichlet distribution
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Dirichlet Distribution

Fo amy) amg-1

p = =k
(p|om) [ rame L1Px
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Dirichlet Distribution

F(Zk amk) amg-1
[T Flamg) l:[ k

P(plam) =
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Dirichlet Distribution

r(zk amk) 1_[ amg—1

P(p|0’m)=l—[kr(amk) . K
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Dirichlet Distribution

alpha=(0.2,0.1,0.1)
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Dirichlet Distribution

If ¢ ~ Dir(()cr), w ~ Mult(()¢), and nx = |[{w; : w; = k}| then

p(¢la, w) o p(w|$)p(d]a) (1)
o H L H¢ak 1 (2)
& H ¢>ak+"k ' (3)

Conjugacy: this posterior has the same form as the prior



Dirichlet Distribution

If ¢ ~ Dir(()cr), w ~ Mult(()¢), and nx = |[{w; : w; = k}| then
p(dla, w) oc p(w|d)p(dla) (1)
o [Tom ]Jom (2)
k k
o [Jorwrmt (3)
k

Conjugacy: this posterior has the same form as the prior
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Generative Model

TOPIC 1

TOPIC 2

TOPIC 3

computer,
technology,
system,
service, site,
phone,
internet,
machine

sell, sale,
store, product,
business,
advertising,
market,
consumer
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Generative Model

The three big Internet
portals begin to distinguish
among as
shopping malls

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

Stock Trades: A Better Deal
For Investors Isn't Simple

TOPIC 1 TOPIC 2

Forget the Bootleg, Just
Download the Movie Legally

Multiplex Heralded As
Linchpin To Growth

TOPIC 3
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Generative Model

computer,
sell, sale,
technology,
~—— store, product,
Y : business,
service, site, L
hone advertising,
.p : market,
internet,
B consumer
machine

Hollywood studios are preparing to let people
download and buy electronic copies of movies over
the Internet, much as record labels now sell songs for

99 cents through Apple Computer's iTunes music store

and other online services ...
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Generative Model

computer,
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9y, store, product,
system, .
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service, site, L
hone advertising,
.p : market,
internet,
. consumer
machine
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download and buy electronic copies of movies over
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99 cents through Apple Computer's iTunes music store
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Generative Model

computer,
sell, sale,
technology,
~—— store, product,
Y : business,
service, site, L
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.p : market,
internet,
B consumer
machine

Hol@/ood stu@s are preparing to let people
dov&Qad and electronic copies of movies over
the Internet, much as record labels now sell songs for

99 cents through Apple Computer's iTunes music store

and other online services ...
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Generative Model

computer,
sell, sale,
technology,
~—— store, product,
Y : business,
service, site, L
hone advertising,
.p : market,
internet,
B consumer
machine

Hol@Vood stu@s are preparing to let people
dow(Tyad and () eleo@@pic cafi)s of m@es over
the InOlet, much as re@d la@ now s@s for
99 qeRys through ATle Comyer's Ty m@ic sighy

Machine Learning: Jordan Boyd-Graber |  Boulder

Topic Models

15 of 51



Generative Model Approach

),

For each topic k € {1,..., K}, draw a multinomial distribution [
from a Dirichlet distribution with parameter A
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Generative Model Approach

O OF
OHO, M

For each topic k € {1,..., K}, draw a multinomial distribution [
from a Dirichlet distribution with parameter A

For each document d € {1,..., M}, draw a multinomial
distribution 64 from a Dirichlet distribution with parameter «

Topic Models | 16 of 51

Machine Learning: Jordan Boyd-Graber |  Boulder



Generative Model Approach

0l0)
ke ),

For each topic k € {1,..., K}, draw a multinomial distribution [
from a Dirichlet distribution with parameter A

For each document d € {1,..., M}, draw a multinomial
distribution 64 from a Dirichlet distribution with parameter «

For each word position n € {1,..., N}, select a hidden topic z,
from the multinomial distribution parameterized by 6.

Topic Models | 16 of 51
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Generative Model Approach

OHONSEONR

For each topic k € {1,..., K}, draw a multinomial distribution [
from a Dirichlet distribution with parameter A

For each document d € {1,..., M}, draw a multinomial
distribution 64 from a Dirichlet distribution with parameter «

For each word position n € {1,..., N}, select a hidden topic z,
from the multinomial distribution parameterized by 6.

Choose the observed word wj, from the distribution 3, .
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Topic Models: What’s Important

Topic models
Topics to word types—multinomial distribution
Documents to topics—multinomial distribution
Focus in this talk: statistical methods

Model: story of how your data came to be
Latent variables: missing pieces of your story
Statistical inference: filling in those missing pieces

We use latent Dirichlet allocation (LDA), a fully Bayesian version
of pLSI, probabilistic version of LSA
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Topic Models: What’s Important

Topic models (latent variables)
Topics to word types—multinomial distribution
Documents to topics—multinomial distribution
Focus in this talk: statistical methods

Model: story of how your data came to be
Latent variables: missing pieces of your story
Statistical inference: filling in those missing pieces

We use latent Dirichlet allocation (LDA), a fully Bayesian version
of pLSI, probabilistic version of LSA
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Evaluation

Corpus
Forget the Bootleg, Just
I Multiplex Heralded As Model A Held-out Data
The Shape of Cinema
ook Trades. & Botler Dol Model B
tock Trades: A Better Deal For Search, Murdoch Looks
The three big Internet

Price War Brews Between

Model C Amazon and Wal-Mart

Red Light, Green Light: A
2-Tone L.E.D. to
Simplify Screens

P(w|w’,2’,am, fu) =
ZP(W, z|w’,z',am, fu)
V4

How you compute it is important too (Wallach et al. 2009)

Machine Learning: Jordan Boyd-Graber |  Boulder Topic Models | 18 of 51



Evaluation

Held-out Log
Corpus Likelihood
r e Model A——-4.8 Held-out Data
The Shape of Cinema,

Sony Ericsson's Infinite
— - F_
S MOdel B 1 5 1 6 For Search, Murdoch Looks
Price War Brews Between
Amazon and Wal-Ma

2-Tone L.E.D. to
Simplify Screens

Model C — -23.42

Measures predictive power, not what the topics are
P(w|w’,2’,am, Bu) =
Z P(w,z|w’,z’,am, Bu)
V4

How you compute it is important too (Wallach et al. 2009)
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Word Intrusion

TOPIC 1 TOPIC2  TOPIC 3

computer,
technology,
system,
service, site,
phone,
internet,
machine
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Word Intrusion

Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow
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Word Intrusion

Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow
Take a high-probability word from another topic and add it

Topic with Intruder

dog, cat, apple, horse, pig, cow
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Word Intrusion

Take the highest probability words from a topic

Original Topic

dog, cat, horse, pig, cow
Take a high-probability word from another topic and add it

Topic with Intruder

dog, cat, apple, horse, pig, cow

We ask users to find the word that doesn't belong

Hypothesis

If the topics are interpretable, users will consistently choose true
intruder
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Word Intrusion

1/10
crash accident board agency tibetan safety

2 /10
commercial network  television advertising  viewer layoff

3/10
arrest crime inmate pitcher prison death

4 /10

hospital doctor health care medical tradition
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Word Intrusion

1/10 Reveal additional response
crash accident board agency safety
2 /10
commercial network television advertising layoff
3/10
arrest crime inmate death
4 /10
hospital doctor health tradition

Order of words was shuffled
Which intruder was selected varied

Model precision: percentage of users who clicked on intruder

Topic Models

21 of 51
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Word Intrusion: Which Topics are Interpretable?

New York Times, 50 LDA Topics

artist
americans exhibition
8 fireplace Japanese gallery
B2 ® garage jewish museum
o T - states painting
= committee house :
- Kitch terrorist
5 o legislation itchen
5 T proposal list <
o republican
© .
g taxis M
=2 i
o
0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875

Model Precision

1.000

Model Precision: percentage of correct intruders found
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Interpretability and Likelihood

Model Precision on New York Times

Model
0.80 cT™
- A
o ® LDA
‘@ i
N o 0.75 | pLSI
. ©
@ E Number of topics
a 3 0.70+
° : ® 50
<]
b= A 100
0.65 W 150

732 730 728
Held-out Likelihood
Better

T T
-7.26 -7.24

within a model, higher likelihood # higher interpretability
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Interpretability and Likelihood

Topic Log Odds on Wikipedia

-1.0- A Model
e ——————— — n cT™™
3 ® LDA
° -1.5
s o pLSI
= 2
(3] 1 Number of topics
a o -2.0
s : @® 50
) A 100
25 W 150
I I I I
-7.52 -7.50 ?_ 744 742 740
Held- out |ke||h00d

Better

across models, higher likelihood # higher interpretability
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Evaluation Takeaway

Measure what you care about
If you care about prediction, likelihood is good

If you care about a particular task, measure that
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Inference

We are interested in posterior distribution

p(Z|X,0) (4)
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Inference

We are interested in posterior distribution

p(Z|X,0) (4)

Here, latent variables are topic assignments z and topics 6. X is
the words (divided into documents), and © are hyperparameters to
Dirichlet distributions: « for topic proportion, A for topics.

p(z,8,0lw,a, ) ()
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Inference

We are interested in posterior distribution

p(Z|X,0) (4)

Here, latent variables are topic assignments z and topics 6. X is
the words (divided into documents), and © are hyperparameters to
Dirichlet distributions: « for topic proportion, A for topics.

p(z,8,0lw,a, ) ()

p(w,z,0,Bla,\) =
H p(BkIN) H p(0q|c) H P(2d,nl0d)P(Wd,nl Bz ,)
k d n
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Gibbs Sampling

A form of Markov Chain Monte Carlo
Chain is a sequence of random variable states

Given a state {zi,...zy} given certain technical conditions,
drawing zy ~ p(z1, ... Zk—1, Zk+1, - - - Z2n| X, ©) for all k
(repeatedly) results in a Markov Chain whose stationary
distribution is the posterior.

For notational convenience, call z with z4 , removed z_4 ,
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Inference

computer,
technology,
system,
service, site,
phone,
internet,
machine

sell, sale,
store, product,
business,
advertising,
market,
consumer

Hol@lood stu@s

are preparing to let people

do@ad and @ elecOlic co()s of n@es over
the In(cet, much as re@)d 1ai@ly now @) s@Bs for
99 s through PC)Ie ConOer‘s iTlC)S n@c s@
and other afiTne se(" Tyes ...
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Inference

G, sell, sale
technology, : :
p—— store, product,
Y ’ business,
service, site, e
hone advertising,
P , market,
internet,
. consumer
machine

Hol@lood stu@s are preparing to let people

dov&Oad and elecOlic coC)s of es over
the In@let, much as re@d la@ now s@s for
99 s through PC)le ConOer's iTlC)S n@c s@
and other olne se(" Tyes ...
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99 s through AC)Ie ConOer‘s iTOs n@c s

Machine Learning: Jordan Boyd-Graber |  Boulder

Topic Models



Inference

computer,
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Inference

computer,
technology,
system,
service, site,
phone,
internet,
machine

sell, sale,
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Gibbs Sampling

For LDA, we will sample the topic assignments
Thus, we want:

p(zd,n — k7 Z—d,n‘wa «, )‘)
p(Z,dm‘W, «, )\)

P(Zd,n = k|zfd,na W, &, )\) =
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Gibbs Sampling

For LDA, we will sample the topic assignments
Thus, we want:
p(zd,n = k7 Z—d,n‘wa «, )‘)

= k _ )\ ==
P(Zd,n Z—d.n, W, 0, A) p(z—d.n|W, a, \)

The topics and per-document topic proportions are integrated out
/ marginalized

Let ny; be the number of words taking topic / in document d. Let
Vi,w be the number of times word w is used in topic k.

a+n i—1 ax+ng >\+V i— Aitvi i
fed( izk b )edk ' d0q fm( Witw,, Bl >5k,wc/,i dfx

Jo, (H 0y +nd'71> dby g (H By +Vk'71) d Bk
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Gibbs Sampling

Integral is normalizer of Dirichlet distribution

Aitviei—1 NANGCER)
/5k Hﬁk; = r (Z,V Bi + Vk7i>
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Gibbs Sampling

Integral is normalizer of Dirichlet distribution

Atviei—1 NANGCER)
J T o= Sy

So we can simplify

fed ( :;&k g +nd ,.—1) 9:k+nd "doy fﬁk ( o A +vk ,.—1) ﬁ? ;d‘f:idﬂk
T (L o

M(ak+ng +1) K r(Awd,ni’Vk,wd'n*’l)
TCf avtng 1) Ll T (0 Pa) o, By

HY I (Ak + Vk,wd,,,)

i#Wd,n

1K r(oi+nq,i) 1Y r(Aitvi.i)
r(=K aj+nqg;) r(ZY Aitviei)
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Gamma Function Identity

M(tng,c+1) K
(=K aitng,i+1) [Tia T (ctk + nai)

r(AWd,n+Vkad,n+1)

v
F(Z,V >\,'+vk,;+1) H"#Wd,n r ()\k + Vk’wdv")

H:K I'(a;+nd1,-)
F(ZIK a,-+nd7,')

 ngk ok Vewy, T Aw.
- K . .
Zi ng,; + i Z; Vk,i + i

1Y T(Aitvi,i)
T(ZY Aitvi,i)

Boulder
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Gibbs Sampling Equation

Nk + ok Vigwy, T Awg,,
Z/K ng i+ Z,‘ Vik,i + Ai

Number of times document d uses topic k

Number of times topic k uses word type wy ,
Dirichlet parameter for document to topic distribution
Dirichlet parameter for topic to word distribution
How much this document likes topic k

How much this topic likes word wy ,
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Gibbs Sampling Equation

Ngk + ok Vigwy, + Awg,
S g+ ai 2oiVii T A

Number of times document d uses topic k

Number of times topic k uses word type wy ,
Dirichlet parameter for document to topic distribution
Dirichlet parameter for topic to word distribution
How much this document likes topic k
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Gibbs Sampling Equation
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Dirichlet parameter for document to topic distribution
Dirichlet parameter for topic to word distribution
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Gibbs Sampling Equation

nd,k + Oék Vkvwd,n + )\Wd.n
SF g+ ai 20 Vki+ A

Number of times document d uses topic k

Number of times topic k uses word type wy ,
Dirichlet parameter for document to topic distribution
Dirichlet parameter for topic to word distribution
How much this document likes topic k

How much this topic likes word wy ,
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Gibbs Sampling Equation

Ndk + k. Vikwg, T )\Wd,n
Z,K ng i+ Z,‘ Vik,i + Ai

Number of times document d uses topic k

Number of times topic k uses word type wy ,
Dirichlet parameter for document to topic distribution
Dirichlet parameter for topic to word distribution
How much this document likes topic k

How much this topic likes word wy ,
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Gibbs Sampling Equation

nd,k + Oék Vk«,Wd.n + )\Wd.n
Z/K ng i+ Z,’ Vi + Ai

Number of times document d uses topic k

Number of times topic k uses word type wy ,
Dirichlet parameter for document to topic distribution
Dirichlet parameter for topic to word distribution
How much this document likes topic k

How much this topic likes word wy ,
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Sample Document

Etruscan | trade price temple | market
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Sample Document

Etruscan | trade price temple | market
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Randomly Assign Topics

“\ /:‘ 3

/™| Etruscan

trade

price

temple

market
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Randomly Assign Topics

/'J 3
/™| Etruscan trade

price temple | market

Italy temple ship trade market

Boulder Topic Models | 35 of 51
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Total Topic Counts

3 2 1 3 1
Etruscan | trade price temple | market
1 2 3
Etruscan 1 0 35
Total market 50 0 1
counts — [—
from all price 42 1 0
docs temple 0 0 20
trade 10 8 1
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Total Topic Counts

3 2 1 3 1
Etruscan | trade price temple | market
1 2 3
Etruscan 1 0 35
Total marlkat 2N n

Sampling Equation

Nd.k + Qk  Vikwan T Awan
S nai+ai 2 vki+ A
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Total Topic Counts

3 2 1 3 1
Etruscan | trade price temple | market
1 2 3
Etruscan 1 0 35
Total marlkat 2N n

Sampling Equation

Ngk + ok Vigwy, + Ay,
ZIK ng i + a; Z,‘ Vi,i + A
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We want to sample this word ...

3 2 1 3 1

Etruscan }fade price temple | market
1 2 3

Etruscan 1 0 35

market 50 0 1

price 42 1 0

temple 0 0 20

trade 10 8 1
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We want to sample this word ...

3 ) 2 1 3 1
Etruscan//trade price temple | market
/ 1 2 3

Etruscan 1 0 35
market 50 0 1
price 42 1 0
temple 0 0 20
trade 10 8 1

\
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Decrement its count

3 ? 1 3 1
Etruscan | trade price temple | market
1 2 3
Etruscan 1 0 35
market 50 0 1
price 42 1 0
temple 0 0 20
trade 10 7 1
\
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What is the conditional distribution for this topic?

3 ? 1 3 1

Etruscan | trade price temple | market
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Part 1: How much does this document like each topic?

3

1

Etruscan

trade

price

temple

market
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Part 1: How much does this document like each topic?

3 ? 1 3 1
Etruscan | trade price temple | market
Topic 1 Topic 2 Topic 3
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Part 1: How much does this document like each topic?

3 ? 1 3 1
Etruscan | trade price temple | market
Tonic 1 Tobic 2 Tobic 3

Sampling Equation

Nd.k + Qk  Vikwan T Awan
S nai+ai 2 vki+ A
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Part 1: How much does this document like each topic?

3 ? 1 3 1
Etruscan | trade price temple | market
Tonic 1 Tobic 2 Tobic 3

Sampling Equation

Ndk+ 0k Vikwg, T Awgp
Z,K ng i+ oj Do Vk,i A
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Part 2: How much does each topic like the word?

3 ? 1 3 1
Etruscan | trade price temple | market
Topic 1 Topic 2 Topic 3

1 2 3
trade 10 1
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Part 2: How much does each topic like the word?

3 ? 1 3 1
Etruscan | trade price temple | market
Tonic 1 Tobic 2 Tobic 3

Sampling Equation

Nd.k + Qk  Vikwan T Awan
S nai+ai 2 vki+ A

|LIUUC ‘ J.U‘ I‘ J.|
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Part 2: How much does each topic like the word?

3 ? 1 3 1
Etruscan | trade price temple | market
Tonic 1 Tobic 2 Tobic 3

Sampling Equation

Ngk + ok Vigwy, + Ay,
ZIK ng i + a; Z,‘ Vi,i + A

|LIUUC ‘ J.U‘ I‘ J.|
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Geometric interpretation

3 ? 1 3 1
Etruscan | trade price temple | market
Topic 1 Topic 2 Topic 3
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Geometric interpretation
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Geometric interpretation

3 ? 1 3 1
Etruscan | trade price temple | market
Topic 1 Topic 2 Topic 3
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Update counts

3 ? 1 3 1

Etruscan | trade price temple | market
1 2 3

Etruscan 1 0 35

market 50 0 1

price 42 1 0

temple 0 0 20

trade 10 7 1
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Update counts

3 ‘1 1 3 1
Etruscan /t/r.ade price temple | market
/ 1 2 3
Etruscan 1 0 35
market 50 0 1
price 42 1 0
temple 0 0 20
trade 11 7 1
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Update counts

3 1 1 3 1
Etruscan | trade price temple | market
T0p|c 1 Topic 2 Topic 3
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Details: how to sample from a distribution

__ 00
Topic 1
/V
Ng i+ k. Vigwg, T Awg, '
S ngi 4+ i 205 Vii + A > Topic 2
\ Topic 3
Topic 4 ~
Q
3
=
=
(0]
Topic 5
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Algorithm

For each iteration i:
For each document d and word n currently assigned to zy:

Decrement ng,z,, and vz, w, ,
ng ko vkde1n+AWd,n
SKongitai  XiviitAi

Sample zpew = k with probability proportional to

Increment ngz,,,, and Vz., w, ,
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Implementation

Algorithm

For each iteration i:
For each document d and word n currently assigned to zqy:
Decrement ng,z,, and vz, w, ,

ng ko Vkowg o AW

Sample zpew = k with probability proportional to S ng rrar Sy vt

Increment ngz,., and Vi, w, ,
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Desiderata

Hyperparameters: Sample them too (slice sampling)
Initialization: Random

Sampling: Until likelihood converges

Lag / burn-in: Difference of opinion on this

Number of chains: Should do more than one
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Available implementations

Mallet (http://mallet.cs.umass.edu)
LDAC (http://www.cs.princeton.edu/ blei/lda-c)
Topicmod (http://code.google.com/p/topicmod)
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Wrapup

Topic Models: Tools to uncover themes in large document
collections

Another example of Gibbs Sampling

In class: Gibbs sampling example
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