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Clustering as Probabilistic Inference

GMM is a probabilistic model (unlike K-means)
There are several latent variables:

Means
Assignments
(Variances)
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Clustering as Probabilistic Inference

GMM is a probabilistic model (unlike K-means)
There are several latent variables:

Means
Assignments
(Variances)

Before, we were doing EM

Today, new models and new methods
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Nonparametric Clustering

What if the number of clusters is not fixed?
Nonparametric: can grow if data need it

Probabilistic distribution over number of clusters
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Dirichlet Process

Distribution over distributions

Parameterized by: «, G
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Dirichlet Process

Distribution over distributions

Parameterized by: «, G

Concentration parameter

Base distribution

You can then draw observations from x ~DP(a, G).
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Defining a DP

Break off sticks

k—1
Vi, Va, ... ~uq Beta(l,a) and Cr:=Vi [J(1 - W)
=1
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Defining a DP

Break off sticks

k—1
Vi, Va, ... ~uq Beta(l,a) and Cr:=Vi [J(1 - W)
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Defining a DP

Break off sticks

k—1
Vi, Va, ... ~uq Beta(l,a) and Cr:=Vi [J(1 - W)
=1
Draw atoms
Dy, Py,... ~ig G

Merge into complete distribution

© = Cils,

kel
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Properties of a DPMM

Expected value is the same as base distribution

EDP(a,6) [X] = Ec [X] (1)
As o — oo, DP(a, G) = G

Number of components unbounded
Impossible to represent fully on computer (truncation)

You can nest DPs
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Effect of scaling parameter o

o

s 0 - o ol o 5 ¢
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DP as mixture Model

and DPMM 8 of 17
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The Chinese Restaurant as a Distribution

To generate an observation, you first sit down at a table. You sit
down at a table proportional to the number of people sitting at the
table.
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~IN
~lw
~ino
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The Chinese Restaurant as a Distribution

To generate an observation, you first sit down at a table. You sit
down at a table proportional to the number of people sitting at the
table.

~NINo

112 X ~ pi3
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The Chinese Restaurant as a Distribution

To generate an observation, you first sit down at a table. You sit
down at a table proportional to the number of people sitting at the
table.

o °
o °® °
°
2 3 2
7 7 7
X~ jiy X~ fip X~ 3

But this is just Maximum Likelihood
Why are we talking about Chinese Restaurants?
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Always can squeeze in one more table ...

The posterior of a DP is CRP

A new observation has a new table / cluster with probability
proportional to «

But this must be balanced against the probability of an observation
given a cluster

©=> Cibs,
kEN
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Gibbs Sampling

We want to know the cluster assignment of each observation

Take a random guess initially
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Gibbs Sampling

We want to know the cluster assignment of each observation
Take a random guess initially
This provides a mean for each cluster

Let the number of clusters grow
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Gibbs Sampling

We want to know the cluster assignment of each observation
(tables)

Take a random guess initially
This provides a mean for each cluster

Let the number of clusters grow
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Gibbs Sampling

We want to know Z

Compute p(zj|z1...2i-1,Zi+1,- - - Zm, X, @, G)
Update z; by sampling from that distribution
Keep going ...

Machine Learning: Jordan Boyd-Graber |  Boulder

Bayesian Nonparametrics and DPMM | 12 of 17



Gibbs Sampling

We want to know Z
Compute p(zj|z1...2i-1,Zi+1,- - - Zm, X, @, G)

Update z; by sampling from that distribution

Keep going ...
Notation
p(zi=klz_;))=p(zi|z1...2i-1,Zi41,- - - Zm) (2)
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Gibbs Sampling for DPMM

p(Z,' =k|Z_;, X, {9/(},04) (3)
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Gibbs Sampling for DPMM

p(zi = k| Z-j, X, {0k}, @) (
:p(Zi:k‘z_i,Xi,)?,Qk,Oé) (

E- NS
~— ~—

Dropping irrelevant terms
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Gibbs Sampling for DPMM

p(zi = k| Z-j, X, {0}, @) (3)
=p(zi = k| Z_j, xi, X, O, @) (4)
=p(zi = k| Z_j, a)p(xi | Ok, X) (5)

(6)

Chain rule
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Gibbs Sampling for DPMM

pzi = k|Z-j, X, {0k}, @) (3)
=p(zi = k| Z_;, xi, X, Ok, @) (4)
=p(zi = k| Z-j,a)p(xi | O, X) ()
_ {(nJra) Jop(xi|0)p(8] G,X) existing (6)

mha Jop(xi 10)p(0] G) new

Applying CRP
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Gibbs Sampling for DPMM

p(zi = k[ Z_;, X, {0}, o) (3)
=p(z; = k| Z_j, x;, X, O, @) (4)
=p(zi = k| Z-j,a)p(xi | Ok, X) (5)
_ {(n +a> Jop(xi10)p(0| G,X) existing )

7 Jop(xi10)p(0] G) new
. {(n”ia) N (x#5.1)  existing o
n+aN(X 0 1) new

Scary integrals assuming G is normal distribution with mean zero and
unit variance. (Derived in optional reading.)
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Algorithm for Gibbs Sampling

Random initial assignment to clusters
For iteration i:

“Unassign” observation n
Choose new cluster for that observation
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Toy Example
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Toy Example

New cluster created!
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Toy Example
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Toy Example

And repeat ...
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Differences between EM and Gibbs

Gibbs often faster to implement
EM easier to diagnose convergence
EM can be parallelized

Gibbs is more widely applicable

Machine Learning: Jordan Boyd-Graber | Boulder Bayesian Nonparametrics and DPMM | 16 of 17



In class and next week

Walking through DPMM clustering

Clustering discrete data with more than one cluster per observation
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