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Statistics Professors HATE Him!

Doctor's discovery revealed the secret to learning any
| problem with just 10 training samples. Watch this
¥ shocking video and learn how rapidly you can find a
| solution to your learning problems using this one sneaky

- i}' kernel trick! Free from overfitting!
5 http://www.oneweirdkerneltrick.com

Slides adapted from Jerry Zhu
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Can you solve this with linear separator?
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Can you solve this with linear separator?
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Can you solve this with linear separator?
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Adding another dimension

Flatland

A Parable of
Spiritual Dimensions

EDwWIN A. ARBOTT

Behold yon miserable creature. That Point is a
Being like ourselves, but confined to the
non-dimensional Gulf. He is himself his own
World, his own Universe; of any other than
himself he can form no conception; he knows
not Length, nor Breadth, nor Height, for he has
had no experience of them; he has no
cognizance even of the number Two; nor has he
a thought of Plurality, for he is himself his One
and All, being really Nothing. Yet mark his
perfect self-contentment, and hence learn this
lesson, that to be self-contented is to be vile
and ignorant, and that to aspire is better than
to be blindly and impotently happy.
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Problems get easier in higher dimensions

(x,x,) = ()cl,)czﬂf)cl2 +x§)
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What's special about SVMs?
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What's special about SVMs?

1 - o
max ) a;j— 5 Z Z ajogyyi(Xi - X;) (1)

This dot product is basically just how much x; looks like x;. Can
we generalize that?
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What's special about SVMs?

1 - o
max p  ai— o Z Z aiajyiyi(Xi - X;) (1)

This dot product is basically just how much x; looks like x;. Can
we generalize that?

Kernels!
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What's a kernel?

A function K : X x X — R is a kernel over X.
This is equivalent to taking the dot product (¢(x1), ¢(x2)) for
some mapping

Mercer’s Theorem: So long as the function is continuous and
symmetric, then K admits an expansion of the form

Kox') = 3 ann(x)én(x) (2)
n=0
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What's a kernel?

A function K : X x X — R is a kernel over X.

This is equivalent to taking the dot product (¢(x1), ¢(x2)) for
some mapping

Mercer’s Theorem: So long as the function is continuous and
symmetric, then K admits an expansion of the form

Kox') = 3 ann(x)én(x) (2)
n=0

The computational cost is just in computing the kernel
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Polynomial Kernel

K(x,x") = (x-x" 4 ¢)? (3)
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Polynomial Kernel

When d = 2:

r2 V2rxia9
(—1,1) (1,1) V2, =2, =21 1 V2, +v2, +v/2,1)
@ L] @ @
» /21
=
3] e ® @
(-1,-1) (1,-1) (1 V2, =2, 42 1 V2, +vZ2, -2, 1)
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Gaussian Kernel

/ 2

X" = ]|

K(x,x") = exp — 553
o
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Gaussian Kernel

/ 2

X" = ]|

K(x,x") = exp — 553
o

which can be rewritten as

K(x,x") = Z e x)t (5)

o"nl

(All polynomials!)
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Gaussian Kernel

o 2
K(x,x') = exp —% (4)

which can be rewritten as

K(x,x") = Z e x)t (5)

o"n!

(All polynomials!)

RBF kemel (G = 1, gamma = 0.25)

pos. vec.
*  neg.vec.
©  supp. vec
= margin vec.
m— ecision bound.
pos. margin
neg. margin
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Tree Kernels

Sometimes we have example x that are hard to express as vectors

For example sentences “a dog” and “a cat”: internal syntax
structure
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Tree Kernels

Sometimes we have example x that are hard to express as vectors

For example sentences “a dog” and “a cat”: internal syntax

structure
NP NF NP Np NP NP
I ARV WP iA A
S R Py T
§ ; :'\> a dog a dog ]E }g ::> a cat a cat
a  dog D ow a e P D N
P
A A
D N a dog D W a cat
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Tree Kernels

Sometimes we have example x that are hard to express as vectors

For example sentences “a dog” and “a cat”: internal syntax
structure

NP NF NP Np NP NP
I\ ARV iA [V A
S R Py T
§ ; :'\> a dog a dog E § ::> a cat a cat
a  dog - e a  cat . P
A A
D N a dog D W a cat

3/5 structures match, so tree kernel returns .6
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What does this do to learnability?

Kernelized hypothesis spaces are obviously more complicated

What does this do to complexity?
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What does this do to learnability?

Kernelized hypothesis spaces are obviously more complicated
What does this do to complexity?

Rademacher complexity for a kernel with radius A and data with
radius r: S C {x: K(x,x) < r?}, H={x—= w-¢(x) : |w| <A}

R 272
Rs (H) < reA

(6)

m
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What does this do to learnability?

Kernelized hypothesis spaces are obviously more complicated
What does this do to complexity?

Rademacher complexity for a kernel with radius A and data with
radius r: S C {x: K(x,x) < r?}, H={x—= w-¢(x) : |w| <A}

R 272
Rs (H) < reA

(6)

m

Proof requires real analysis
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Margin learnability

With probability 1 — §:

R(h) < Ry(h) + 24/ rz/\;/p2 +1/ IZ%;S (7)
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Margin learnability

With probability 1 — §:

R(h) < R,(h) + 24/ r2/\r2n/p2 +1/ IZi} (7)

So if you can find a simple kernel representation that induces a
margin, use it!
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Margin learnability

With probability 1 — §:

R(h) < Ry(h) + 24/ rz/\;/p2 +1/ IZ%;S (7)

So if you can find a simple kernel representation that induces a
margin, use it!

...so long as you can handle the computational complexity
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How does it effect optimization

Replace all dot product with kernel evaluations K(xi, x2)
Makes computation more expensive, overall structure is the same

Try linear first!
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Recap

This completes our discussion
Pennsylvania Learners Being Ripped Off B of SVMs

Not Knowin rhls One Weird Kernel Trick .
dorn by e Workhorse method of machine

learners  to

St g (It (3 : learning

minimize your em risk for

less by following this simple rule.

Flexible, fast, effective

1150  51-100 100-1000 1001+
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Recap

This completes our discussion
Pennsylvania Learners Being Ripped Off B of SVMs

Not Knowing this One Weird Kernel Trick .
The President hasgmdared al P Workhorse method Of machine

learners  to  minimi their

Sl s L G\ ) learning

minimize your emp risk for

less by following thi

Flexible, fast, effective

1150  51-100 100-1000 1001+

Kernels: applicable to wide
range of data, inner product
trick keeps method simple
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