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Trick: Allow for a few bad apples
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New objective function

1
min 3wl +C;§f” (2)

subject to yi(w-x; + b) > 1—& A& > 0,0 € [1, m]
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1
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Standard margin
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New objective function

N
z > gP 2
min o "+ ,-—15 (2)

subject to yi(w-x; + b) > 1—& A& > 0,0 € [1, m]

Standard margin

How wrong a point is (slack variables)
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New objective function

1
min 3wl +C;§f” (2)

subject to y;j(w - x; +b) >1—&AE > 0,0 €1, m]
Standard margin
How wrong a point is (slack variables)

Tradeoff between margin and slack variables
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New objective function

1
min 3wl +C;§f’° (2)

subject to y;j(w - x; +b) >1—&AE > 0,0 €1, m]
Standard margin
How wrong a point is (slack variables)
Tradeoff between margin and slack variables

How bad wrongness scales

Jordan Boyd-Graber | Boulder Slack SVMs | 4 of 28



Aside: Loss Functions

Losses measure how bad a mistake is

Important for slack as well
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Aside: Loss Functions

Losses measure how bad a mistake is
Important for slack as well
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We'll focus on linear hinge loss
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Optimizing Constrained Functions

Theorem: Lagrange Multiplier Method

Given functions f(xi,...x,) and g(xi,...x,), the critical points of f
restricted to the set g = 0 are solutions to equations:

of og
8—Xi(xl, o ) —)\a—Xi(xl, .oXp) Vi
g(Xl, . Xn) =0

This is n+ 1 equations in the n+ 1 variables xg, ... xp, \.
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Lagrange Example

Maximize f(x,y) = /Xy subject to the constraint 20x + 10y = 200.

Compute derivatives
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of 1 |y 0g
ax_z\/: ax 20
of 1 /x 08 _ 4
dy 2\y Oy
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Lagrange Example

Maximize f(x,y) = /Xy subject to the constraint 20x + 10y = 200.

Compute derivatives

of 1 |y Og
ax_z\/: ax 20
of 1 /x 08 _ 4
dy 2\ y Oy

Create new systems of equations

1 Jy
Z. /L =9
2\/: oA
1 /x
B ()
5

20x + 10y = 200
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Lagrange Example

Dividing the first equation by the second gives us

— 3)

X

which means y = 2x, plugging this into the constraint equation
gives:

20x + 20(2x) = 200
x=5=y=10
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New Lagrangian

N .
X(W,b, y & ):EHW”2+CZ£I (4)
i=1

=Y ailyi(w-x+b) - 1+¢] (5)

i=1

- _Z Bi&i (6)
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New Lagrangian

2(w,b,€0,6) =5 WP + €Y “
i=1
=Y ailyi(w-x+b) - 1+¢] (5)
i=1
- Bi&i (6)
i=1

Taking the gradients (V,,.Z, V.2, V¢,) and solving for zero gives us

D aiyi=0 (7) w=> ajyx (8) ai+Bi=C (9)
i=1 i=1
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New Lagrangian

2(w,b,€0,6) =5 WP + €Y “
i=1
=Y ailyi(w-x+b) - 1+¢] (5)
i=1
- Bi&i (6)
i=1

Taking the gradients (V,,.Z, V.2, V¢,) and solving for zero gives us

> aiyi=0 (7) W= ayx (8) ai+Bi=C (9)
i=1 i=1
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Simplifying dual objective

m m
Za;y,-:o W:Za;y;x; aj+8j=C
i—1 '
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Simplifying dual objective

m m
Zai}/izo W= oiyixi ai+pi=C
i—1 =1

1 . m . . m m
2 =5 lwill = D aiyiw % =Y aiyib—> Bi&  (10)
i i i=1
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Simplifying dual objective

m m
Zai)/izo VV:ZOM)/;X,' aj+Bi=C
i=1 i=1

m

E Qi yiXi

i=1

1
Z=3

m m m m
— Z Z aiojyiyi(Xi - Xi) — Z aiyib — Zﬁigi
i i i=1

(10)
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Simplifying dual objective

m m
Sawi=0  #=Yawm A
— =1

Z alylxl

_1
2

m m m m
=Y aiajyiyi(R-K) =Y aiyib—> Bi;
F i i=1

i (10)
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Simplifying dual objective

m m
Zai)/izo VV:ZOM)/;X,' aj+Bi=C
i—1 i—1

m m m m m
DaiyiFi| = DY eiajyiyi(% %) = D jaiyib+ )y ai
=1 J i i

i (10)
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Simplifying dual objective

m m
Z@i}//zo VV:ZOM)/;X,' aj+Bi=C
i—1 i—1

iYiXi

m m m m
= D0 Y ciyyiy(% - R) = D aiib+ Yo
J i ;

i (10)
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Simplifying dual objective

m m
Zai)/izo VV:ZOM)/;X,' aj+Bi=C
i=1 i=1

m m m m m
Zaiy,'?i Z ZOCO‘JY:YJ X - %)—Z“M‘HZO"’
i=1 J i i

i (10)
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Simplifying dual objective

m m
ZOW;ZO VT/ZZOMY;X/ aj+8j=C
i=1 i=1

1 m m m m
L = 5 Z; a,-y,->_<’,- — Z ' a,-ajy,-yj(?j )_(',) + Z (o7 (10)
i= J i

i

First two terms are the same!
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Simplifying dual objective

m m
D aiyi=0 W= ajyix; aj+Bi=C
i=1 i=1
1 m m m
L= =5 > o5 %)+ o (10)
i i

Just like separable case, except that we add the constraint that
o < CI
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Wrapup

Adding slack variables don't break the SVM problem
Very popular algorithm

SVMLight (many options)

Libsvm / Liblinear (very fast)

Weka (friendly)

pyml| (Python focused, from Colorado)

Next up: simple algorithm for finding SVMs
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Plan

Dual Objective
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Lagrange Multipliers

Introduce Lagrange variables ; > 0, i € [1, m] for each of the m
constraints (one for each data point).

Llw,ba) = WP =Y aililwox+0) -1 (1)
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Lagrange Multipliers

Introduce Lagrange variables ; > 0, i € [1, m] for each of the m
constraints (one for each data point).

Llw,ba) = WP =Y aililwox+0) -1 (1)

If o # 0, then y;j(w - x; + b) = £1.
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Solving Lagrangian

Weights

m
w = Za;y;f{; (12)
i=1
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Solving Lagrangian
Weights
m
w = Z Qi yiXi (12)
i=1

Bias

0= Z Q;yi (13)
i=1
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Solving Lagrangian
Weights
m
w = Z Qi yiXi (12)
i=1
Bias

0= o (13)
i=1

Support Vector-ness

aij=0Vyi(w-xi+b)=1 (14)
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Reparameterize in terms of «

maxZa,ffZZa a;yiyi(Xi - X;) (15)

i=1 i=1
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Outline for SVM Optimization (SMO)

Select two examples i, j
Get a learning rate 1
Update q;

Update «;
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Plan

Algorithm Big Picture
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Contrast with SG

There's a learning rate 7 that depends on the data
Use the error of an example to derive update

You update multiple « at once
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Contrast with SG

There's a learning rate ) that depends on the data
Use the error of an example to derive update

You update multiple « at once: if one goes up, the other should go
down because > y;a; =0
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More details

We enforce every aj < C (slackness)

How do we know we've converged?
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More details

We enforce every aj < C (slackness)

How do we know we've converged?

ai=0= y(w-x+b)>1 (16)
aj=C= y(w-x+b)<1 (17)
0<ai<C= yi(w-x;+b)=1 (18)

(Karush-Kuhn-Tucker Conditions)
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More details

We enforce every aj < C (slackness)

How do we know we've converged?

ai=0= y(w-x+b)>1 (16)
aj=C= y(w-x+b)<1 (17)
0<ai<C= yi(w-x;+b)=1 (18)

(Karush-Kuhn-Tucker Conditions)

Keep checking (to some tolerance)
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Plan

The Algorithm
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Step 1: Select / and j

Iterate over i = {1,...m}

Repeat until KKT conditions are met

Choose j randomly from m — 1 other options
You can do better (particularly for large datasets)
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Step 2: Optimize o;

Compute upper (H) and lower (L) bounds that ensure 0 < o < C.

Yi # Y Yi =Y
L = max(0, oj — «}) (19) L = max(0,aj + o; — C) (21)
H = min(C,C + a; — a;) (20) H = min(C, a; + ;) (22)
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Step 2: Optimize o;

Compute upper (H) and lower (L) bounds that ensure 0 < o < C.

Yi # Y Yi =Y
L = max(0, oj — «}) (19) L = max(0,aj + o; — C) (21)
H = min(C,C + a; — a;) (20) H = min(C, a; + ;) (22)

This is because the update for «; is based on y;y; (sign matters)
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Step 2: Optimize o;

Compute errors for i and j

Ex = f(xk) — yk (23)
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Step 2: Optimize q;
Compute errors for i and j

Ek = f(Xk) — Yk (23)
and the learning rate (more similar, higher step size)

N =2Xj - Xj — X - Xj — Xj - X (24)
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Step 2: Optimize q;

Compute errors for i and j
Ex = f(xk) — yk (23)
and the learning rate (more similar, higher step size)
N =2Xj - Xj — X - Xj — Xj - X (24)

for new value for o;

aj _ Oéj(~OId) _ -y./(E’n_ EJ) (25)

Similar to stochastic gradient, but with additional error term. If a}k is
outside [L, H], clip it so that it is within the range.
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Step 3: Optimize «;

Set a;:
S B
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Step 3: Optimize «;

Set a;:
af = ol 4 yiy; () — ay) (26)

1

This balances out the move that we made for q;.
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Step 4: Optimize the threshold b

We need the KKT conditions to be satisfied for these two examples.
fo<a;<C

b= by =b—E—yi(a} —a®)x-xi — yi(af — ol®D)x; - x (27)
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Step 4: Optimize the threshold b

We need the KKT conditions to be satisfied for these two examples.
fo<a;<C

b= by =b—E—yi(a} —a®)x-xi — yi(af — ol®D)x; - x (27)

fo0<a<C

b=by=b—E—yi(aj — oz,(-OId))x; - Xj —yj(a}‘ — ozj(-OId))Xj -xj (28)

If both «; and «; are at the bounds, then anything between b; and
by works, so we set
. by + by

b
2

(29)
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Iterations / Details

What if i doesn't violate the KKT conditions?
What if n > 07
When do we stop?
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Iterations / Details

What if i doesn't violate the KKT conditions? Skip it!

What if n > 07 Skip it!

When do we stop? Until we go through o’s without changing
anything
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Plan

Recap
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Recap

SMO: Optimize objective function for two data points
Convex problem: Will converge

Relatively fast

Gives good performance

Next HW!
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