

1 of 28

Slack SVMs

Jordan Boyd-Graber University of Colorado Boulder LECTURE 8A

Can SVMs Work Here?

Jordan Boyd-Graber | Boulder Slack SVMs |

Can SVMs Work Here?

$$y_i(w \cdot x_i + b) \ge 1 \tag{1}$$

Trick: Allow for a few bad apples

Jordan Boyd-Graber | Boulder Slack SVMs |

New objective function

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1} \xi_i^p$$
 (2)

subject to $y_i(w \cdot x_i + b) \ge 1 - \xi_i \wedge \xi_i \ge 0, i \in [1, m]$

New objective function

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1} \xi_i^{p}$$
 (2)

subject to $y_i(w \cdot x_i + b) \ge 1 - \xi_i \wedge \xi_i \ge 0, i \in [1, m]$

Standard margin

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{\infty} \frac{\xi_i^p}{2}$$
 (2)

subject to $y_i(w \cdot x_i + b) \ge 1 - \xi_i \land \xi_i \ge 0, i \in [1, m]$

- Standard margin
- How wrong a point is (slack variables)

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + \frac{C}{C} \sum_{i=1}^{\infty} \xi_i^{p}$$
 (2)

subject to $y_i(w \cdot x_i + b) \ge 1 - \xi_i \land \xi_i \ge 0, i \in [1, m]$

- Standard margin
- How wrong a point is (slack variables)
- Tradeoff between margin and slack variables

$$\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1} \xi_i^{p}$$
 (2)

subject to $y_i(w \cdot x_i + b) \ge 1 - \xi_i \land \xi_i \ge 0, i \in [1, m]$

- Standard margin
- How wrong a point is (slack variables)
- Tradeoff between margin and slack variables
- How bad wrongness scales

- Losses measure how bad a mistake is
- Important for slack as well

- Losses measure how bad a mistake is
- Important for slack as well

- Losses measure how bad a mistake is
- Important for slack as well

Jordan Boyd-Graber | Boulder Slack SVMs |

- Losses measure how bad a mistake is
- Important for slack as well

- Losses measure how bad a mistake is
- Important for slack as well

We'll focus on linear hinge loss

Theorem: Lagrange Multiplier Method

Given functions $f(x_1, ... x_n)$ and $g(x_1, ... x_n)$, the critical points of f restricted to the set g = 0 are solutions to equations:

$$\frac{\partial f}{\partial x_i}(x_1, \dots x_n) = \lambda \frac{\partial g}{\partial x_i}(x_1, \dots x_n) \quad \forall i$$
$$g(x_1, \dots x_n) = 0$$

This is n+1 equations in the n+1 variables $x_1, \ldots x_n, \lambda$.

Maximize $f(x, y) = \sqrt{xy}$ subject to the constraint 20x + 10y = 200.

Compute derivatives

Maximize $f(x, y) = \sqrt{xy}$ subject to the constraint 20x + 10y = 200.

Compute derivatives

$$\frac{\partial f}{\partial x} = \frac{1}{2} \sqrt{\frac{y}{x}} \quad \frac{\partial g}{\partial x} = 20$$
$$\frac{\partial f}{\partial y} = \frac{1}{2} \sqrt{\frac{x}{y}} \quad \frac{\partial g}{\partial y} = 10$$

Maximize $f(x, y) = \sqrt{xy}$ subject to the constraint 20x + 10y = 200.

Compute derivatives

$$\frac{\partial f}{\partial x} = \frac{1}{2} \sqrt{\frac{y}{x}} \quad \frac{\partial g}{\partial x} = 20$$
$$\frac{\partial f}{\partial y} = \frac{1}{2} \sqrt{\frac{x}{y}} \quad \frac{\partial g}{\partial y} = 10$$

Create new systems of equations

Maximize $f(x, y) = \sqrt{xy}$ subject to the constraint 20x + 10y = 200.

Compute derivatives

$$\frac{\partial f}{\partial x} = \frac{1}{2} \sqrt{\frac{y}{x}} \quad \frac{\partial g}{\partial x} = 20$$
$$\frac{\partial f}{\partial y} = \frac{1}{2} \sqrt{\frac{x}{y}} \quad \frac{\partial g}{\partial y} = 10$$

Create new systems of equations

$$\frac{1}{2}\sqrt{\frac{y}{x}} = 20\lambda$$

$$\frac{1}{2}\sqrt{\frac{x}{y}} = 10\lambda$$

$$20x + 10y = 200$$

Dividing the first equation by the second gives us

$$\frac{y}{x} = 2 \tag{3}$$

which means y = 2x, plugging this into the constraint equation gives:

$$20x + 20(2x) = 200$$

 $x = 5 \Rightarrow y = 10$

$$\mathscr{L}(\vec{w}, b, \vec{\xi}, \vec{\alpha}, \vec{\beta}) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i$$
 (4)

$$-\sum_{i=1}^{m} \alpha_{i} [y_{i}(w \cdot x_{i} + b) - 1 + \xi_{i}]$$
 (5)

$$-\sum_{i=1}^{m}\beta_{i}\xi_{i}\tag{6}$$

9 of 28

$$\mathscr{L}(\vec{w}, b, \vec{\xi}, \vec{\alpha}, \vec{\beta}) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i$$
 (4)

$$-\sum_{i=1}^{m} \alpha_{i} \left[y_{i}(w \cdot x_{i} + b) - 1 + \xi_{i} \right]$$
 (5)

$$-\sum_{i=1}^{m}\beta_{i}\xi_{i}\tag{6}$$

Taking the gradients $(\nabla_w \mathcal{L}, \nabla_b \mathcal{L}, \nabla_{\xi_i})$ and solving for zero gives us

$$\sum_{i=1}^{m} \alpha_i y_i = 0 \quad (7) \qquad \vec{w} = \sum_{i=1}^{m} \alpha_i y_i x_i \quad (8) \qquad \alpha_i + \beta_i = C \quad (9)$$

$$\mathscr{L}(\vec{w}, b, \vec{\xi}, \vec{\alpha}, \vec{\beta}) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i$$
 (4)

$$-\sum_{i=1}^{m} \alpha_{i} [y_{i}(w \cdot x_{i} + b) - 1 + \xi_{i}]$$
 (5)

$$-\sum_{i=1}^{m}\beta_{i}\xi_{i}\tag{6}$$

Taking the gradients $(\nabla_{\mathbf{w}} \mathcal{L}, \nabla_{\mathbf{b}} \mathcal{L}, \nabla_{\xi_i})$ and solving for zero gives us

$$\sum_{i=1}^{m} \alpha_i y_i = 0 \quad (7) \qquad \vec{w} = \sum_{i=1}^{m} \alpha_i y_i x_i \quad (8) \qquad \alpha_i + \beta_i = C \quad (9)$$

$$\mathcal{L}(\vec{w}, b, \vec{\xi}, \vec{\alpha}, \vec{\beta}) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i$$
 (4)

$$-\sum_{i=1}^{m} \alpha_{i} \left[y_{i}(w \cdot x_{i} + b) - 1 + \xi_{i} \right]$$
 (5)

$$-\sum_{i=1}^{m}\beta_{i}\xi_{i}\tag{6}$$

Taking the gradients $(\nabla_w \mathcal{L}, \nabla_b \mathcal{L}, \nabla_{\xi_i})$ and solving for zero gives us

$$\sum_{i=1}^{m} \alpha_i y_i = 0 \quad (7) \qquad \vec{\mathbf{w}} = \sum_{i=1}^{m} \alpha_i y_i x_i \quad (8) \qquad \alpha_i + \beta_i = C \quad (9)$$

$$\mathscr{L}(\vec{w}, b, \vec{\xi}, \vec{\alpha}, \vec{\beta}) = \frac{1}{2} ||w||^2 + C \sum_{i=1}^m \xi_i$$
 (4)

$$-\sum_{i=1}^{m} \alpha_i \left[y_i (w \cdot x_i + b) - 1 + \xi_i \right]$$
 (5)

$$-\sum_{i=1}^{m}\beta_{i}\xi_{i}\tag{6}$$

Taking the gradients $(\nabla_w \mathcal{L}, \nabla_b \mathcal{L}, \nabla_{\xi_i})$ and solving for zero gives us

$$\sum_{i=1}^{m} \alpha_i y_i = 0 \quad (7) \qquad \vec{w} = \sum_{i=1}^{m} \alpha_i y_i x_i \quad (8) \qquad \alpha_i + \beta_i = C \quad (9)$$

Simplifying dual objective

$$\sum_{i=1}^m \alpha_i y_i = 0$$

$$\vec{w} = \sum_{i=1}^{m} \alpha_i y_i x_i$$

$$\alpha_i + \beta_i = C$$

Jordan Boyd-Graber | Boulder Slack

$$\sum_{i=1}^{m} \alpha_i y_i = 0 \qquad \vec{\mathbf{w}} = \sum_{i=1}^{m} \alpha_i y_i x_i \qquad \alpha_i + \beta_i = C$$

$$\mathcal{L} = \frac{1}{2} \|\vec{\mathbf{w}}_i\| - \sum_{i=1}^{m} \alpha_i y_i \vec{\mathbf{w}} \cdot \vec{\mathbf{x}}_i - \sum_{i=1}^{m} \alpha_i y_i b - \sum_{i=1}^{m} \beta_i \xi_i \qquad (10)$$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0 \qquad \vec{w} = \sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} \qquad \alpha_{i} + \beta_{i} = C$$

$$\mathcal{L} = \frac{1}{2} \left\| \sum_{i=1}^{m} \alpha_{i} y_{i} \vec{x}_{i} \right\| - \sum_{i}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\vec{x}_{j} \cdot \vec{x}_{i}) - \sum_{i}^{m} \alpha_{i} y_{i} b - \sum_{i=1}^{m} \beta_{i} \xi_{i}$$

$$(10)$$

Jordan Boyd-Graber | Boulder Slack SVMs |

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0 \qquad \vec{w} = \sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} \qquad \alpha_{i} + \beta_{i} = C$$

$$\mathcal{L} = \frac{1}{2} \left\| \sum_{i=1}^{m} \alpha_{i} y_{i} \vec{x}_{i} \right\| - \sum_{i}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\vec{x}_{j} \cdot \vec{x}_{i}) - \sum_{i=1}^{m} \alpha_{i} y_{i} b - \sum_{i=1}^{m} \beta_{i} \xi_{i}$$

$$(10)$$

Jordan Boyd-Graber | Boulder Slack SVMs |

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0 \qquad \vec{w} = \sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} \qquad \alpha_{i} + \beta_{i} = C$$

$$\mathcal{L} = \frac{1}{2} \left\| \sum_{i=1}^{m} \alpha_{i} y_{i} \vec{x}_{i} \right\| - \sum_{i}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\vec{x}_{j} \cdot \vec{x}_{i}) - \sum_{i}^{m} \alpha_{i} y_{i} b + \sum_{i=1}^{m} \alpha_{i} y_{i} b + \sum_{i=1}^{m}$$

Jordan Boyd-Graber | Boulder Slack SVMs |

$$\sum_{i=1}^{m} \alpha_i y_i = 0$$

$$\sum_{i=1}^{m} \alpha_i y_i = 0 \qquad \qquad \vec{w} = \sum_{i=1}^{m} \alpha_i y_i x_i$$

$$\alpha_i + \beta_i = C$$

10 of 28

$$\mathcal{L} = \frac{1}{2} \left\| \sum_{i=1}^{m} \alpha_i y_i \vec{x}_i \right\|$$

$$\mathcal{L} = \frac{1}{2} \left\| \sum_{i=1}^{m} \alpha_i y_i \vec{x}_i \right\| - \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j (\vec{x}_j \cdot \vec{x}_i) - \sum_{i=1}^{m} \alpha_i y_i b + \sum_{i=1}^{m} \alpha_i y_i c$$
(10)

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0 \qquad \vec{w} = \sum_{i=1}^{m} \alpha_{i} y_{i} x_{i} \qquad \alpha_{i} + \beta_{i} = C$$

$$\mathcal{L} = \frac{1}{2} \left\| \sum_{i=1}^{m} \alpha_{i} y_{i} \vec{x}_{i} \right\| - \sum_{i}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\vec{x}_{j} \cdot \vec{x}_{i}) - \sum_{i}^{m} \alpha_{i} y_{i} b + \sum_{i=1}^{m} \alpha_{i} y_{i} b + \sum_{i=1}^{m}$$

$$\sum_{i=1}^{m} \alpha_i y_i = 0 \qquad \qquad \vec{w} = \sum_{i=1}^{m} \alpha_i y_i x_i \qquad \qquad \alpha_i + \beta_i = C$$

$$\mathcal{L} = \frac{1}{2} \left\| \sum_{i=1}^{m} \alpha_i y_i \vec{x}_i \right\| - \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j (\vec{x}_j \cdot \vec{x}_i) + \sum_{i=1}^{m} \alpha_i \qquad (10)$$

First two terms are the same!

Jordan Boyd-Graber | Boulder Slack SVMs |

$$\sum_{i=1}^{m} \alpha_i y_i = 0 \qquad \vec{w} = \sum_{i=1}^{m} \alpha_i y_i x_i \qquad \alpha_i + \beta_i = C$$

$$\mathcal{L} = -\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_i \alpha_j y_i y_j (\vec{x}_j \cdot \vec{x}_i) + \sum_{i=1}^{m} \alpha_i \qquad (10)$$

Just like separable case, except that we add the constraint that $\alpha_i \leq C!$

Jordan Boyd-Graber | Boulder Slack SVMs |

Wrapup

- Adding slack variables don't break the SVM problem
- Very popular algorithm
 - SVMLight (many options)
 - Libsvm / Liblinear (very fast)
 - Weka (friendly)
 - pyml (Python focused, from Colorado)
- Next up: simple algorithm for finding SVMs

Plan

Dual Objective

Algorithm Big Picture

The Algorithm

Recap

Jordan Boyd-Graber | Boulder Slack SVMs |

Lagrange Multipliers

Introduce Lagrange variables $\alpha_i \geq 0$, $i \in [1, m]$ for each of the m constraints (one for each data point).

$$\mathscr{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{m} \alpha_i \left[y_i(w \cdot x_i + b) - 1 \right]$$
 (11)

Lagrange Multipliers

Introduce Lagrange variables $\alpha_i \geq 0$, $i \in [1, m]$ for each of the m constraints (one for each data point).

$$\mathscr{L}(w, b, \alpha) = \frac{1}{2} ||w||^2 - \sum_{i=1}^{m} \alpha_i \left[y_i (w \cdot x_i + b) - 1 \right]$$
 (11)

13 of 28

If $\alpha \neq 0$, then $y_i(w \cdot x_i + b) = \pm 1$.

Solving Lagrangian

Weights

$$\vec{w} = \sum_{i=1}^{m} \alpha_i y_i \vec{x}_i \tag{12}$$

14 of 28

Solving Lagrangian

Weights

$$\vec{w} = \sum_{i=1}^{m} \alpha_i y_i \vec{x}_i \tag{12}$$

Bias

$$0 = \sum_{i=1}^{m} \alpha_i y_i \tag{13}$$

14 of 28

Solving Lagrangian

Weights

$$\vec{w} = \sum_{i=1}^{m} \alpha_i y_i \vec{x}_i \tag{12}$$

Bias

$$0 = \sum_{i=1}^{m} \alpha_i y_i \tag{13}$$

Support Vector-ness

$$\alpha_i = 0 \lor y_i(w \cdot x_i + b) = 1 \tag{14}$$

$$\max_{\vec{\alpha}} \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i=1}^{m} \sum_{i=1}^{m} \alpha_i \alpha_j y_i y_j (\vec{x}_i \cdot \vec{x}_j)$$
 (15)

Outline for SVM Optimization (SMO)

- 1. Select two examples i, j
- 2. Get a learning rate η
- 3. Update α_j
- 4. Update α_i

Jordan Boyd-Graber | Boulder Slack SVMs |

Plan

Dual Objective

Algorithm Big Picture

The Algorithm

Recap

Contrast with SG

- ullet There's a learning rate η that depends on the data
- Use the error of an example to derive update
- You update multiple α at once

Contrast with SG

- There's a learning rate η that depends on the data
- Use the error of an example to derive update
- You update multiple α at once: if one goes up, the other should go down because $\sum y_i \alpha_i = 0$

More details

- We enforce every $\alpha_i < C$ (slackness)
- How do we know we've converged?

More details

- We enforce every $\alpha_i < C$ (slackness)
- How do we know we've converged?

$$\alpha_i = 0 \Rightarrow y_i(w \cdot x_i + b) \ge 1$$
 (16)

19 of 28

$$\alpha_i = C \Rightarrow y_i(w \cdot x_i + b) \le 1$$
 (17)

$$0 < \alpha_i < C \Rightarrow y_i(w \cdot x_i + b) = 1 \tag{18}$$

(Karush-Kuhn-Tucker Conditions)

More details

- We enforce every $\alpha_i < C$ (slackness)
- How do we know we've converged?

$$\alpha_i = 0 \Rightarrow y_i(w \cdot x_i + b) \ge 1$$
 (16)

$$\alpha_i = C \Rightarrow y_i(w \cdot x_i + b) \le 1$$
 (17)

19 of 28

$$0 < \alpha_i < C \Rightarrow y_i(w \cdot x_i + b) = 1 \tag{18}$$

(Karush-Kuhn-Tucker Conditions)

Keep checking (to some tolerance)

Plan

Dual Objective

Algorithm Big Picture

The Algorithm

Recap

Jordan Boyd-Graber | Boulder Slack SVMs |

Step 1: Select *i* and *j*

- Iterate over $i = \{1, \dots m\}$
- Repeat until KKT conditions are met
- Choose j randomly from m-1 other options
- You can do better (particularly for large datasets)

1. Compute upper (H) and lower (L) bounds that ensure $0 < \alpha_j \le C$.

$$y_i \neq y_j$$

$$L = \max(0, \alpha_j - \alpha_i) \qquad (19)$$

$$H = \min(C, C + \alpha_j - \alpha_i) \quad (20)$$

$$y_i = y_j$$

$$L = \max(0, \alpha_i + \alpha_j - C) \quad (21)$$

$$H = \min(C, \alpha_j + \alpha_i) \quad (22)$$

1. Compute upper (H) and lower (L) bounds that ensure $0 < \alpha_j \le C$.

$$y_i \neq y_j$$

$$y_i = y_j$$

$$L = \max(0, \alpha_j - \alpha_i) \qquad (19)$$

$$L = \max(0, \alpha_i + \alpha_j - C) \qquad (21)$$

$$H = \min(C, C + \alpha_j - \alpha_i) \qquad (20)$$

$$H = \min(C, \alpha_j + \alpha_i) \qquad (22)$$

This is because the update for α_i is based on $y_i y_j$ (sign matters)

Compute errors for i and j

$$E_k \equiv f(x_k) - y_k \tag{23}$$

23 of 28

Compute errors for i and j

$$E_k \equiv f(x_k) - y_k \tag{23}$$

23 of 28

and the learning rate (more similar, higher step size)

$$\eta = 2x_i \cdot x_j - x_i \cdot x_i - x_j \cdot x_j \tag{24}$$

Compute errors for i and j

$$E_k \equiv f(x_k) - y_k \tag{23}$$

and the learning rate (more similar, higher step size)

$$\eta = 2x_i \cdot x_j - x_i \cdot x_i - x_j \cdot x_j \tag{24}$$

for new value for α_j

$$\alpha_j^* = \alpha_j^{(old)} - \frac{y_j(E_i - E_j)}{\eta} \tag{25}$$

23 of 28

Compute errors for i and j

$$E_k \equiv f(x_k) - y_k \tag{23}$$

and the learning rate (more similar, higher step size)

$$\eta = 2x_i \cdot x_j - x_i \cdot x_i - x_j \cdot x_j \tag{24}$$

for new value for α_j

$$\alpha_j^* = \alpha_j^{(old)} - \frac{y_j(E_i - E_j)}{\eta} \tag{25}$$

23 of 28

Similar to stochastic gradient, but with additional error term.

Compute errors for i and j

$$E_k \equiv f(x_k) - y_k \tag{23}$$

and the learning rate (more similar, higher step size)

$$\eta = 2x_i \cdot x_j - x_i \cdot x_i - x_j \cdot x_j \tag{24}$$

for new value for α_j

$$\alpha_j^* = \alpha_j^{(old)} - \frac{y_j(E_i - E_j)}{\eta} \tag{25}$$

23 of 28

Similar to stochastic gradient, but with additional error term. If α_j^* is outside [L, H], clip it so that it is within the range.

Set
$$\alpha_i$$
:

$$\alpha_i^* = \alpha_i^{(old)} + y_i y_j \left(\alpha_j^{(old)} - \alpha_j \right)$$
 (26)

24 of 28

Set α_i :

$$\alpha_i^* = \alpha_i^{(old)} + y_i y_j \left(\alpha_j^{(old)} - \alpha_j \right)$$
 (26)

This balances out the move that we made for α_j .

Step 4: Optimize the threshold b

We need the KKT conditions to be satisfied for these two examples.

• If
$$0 < \alpha_i < C$$

$$b = b_1 = b - E_i - y_i(\alpha_i^* - \alpha_i^{(old)})x_i \cdot x_i - y_j(\alpha_j^* - \alpha_j^{(old)})x_i \cdot x_j$$
 (27)

Step 4: Optimize the threshold b

We need the KKT conditions to be satisfied for these two examples.

• If $0 < \alpha_i < C$

$$b = b_1 = b - E_i - y_i (\alpha_i^* - \alpha_i^{(old)}) x_i \cdot x_i - y_j (\alpha_j^* - \alpha_j^{(old)}) x_i \cdot x_j$$
 (27)

• If $0 < \alpha_i < C$

$$b = b_2 = b - E_j - y_i(\alpha_i^* - \alpha_i^{(old)})x_i \cdot x_j - y_j(\alpha_j^* - \alpha_j^{(old)})x_j \cdot x_j$$
 (28)

Step 4: Optimize the threshold b

We need the KKT conditions to be satisfied for these two examples.

• If $0 < \alpha_i < C$

$$b = b_1 = b - E_i - y_i (\alpha_i^* - \alpha_i^{(old)}) x_i \cdot x_i - y_j (\alpha_j^* - \alpha_j^{(old)}) x_i \cdot x_j$$
 (27)

• If $0 < \alpha_i < C$

$$b = b_2 = b - E_j - y_i(\alpha_i^* - \alpha_i^{(old)})x_i \cdot x_j - y_j(\alpha_j^* - \alpha_j^{(old)})x_j \cdot x_j$$
 (28)

• If both α_i and α_j are at the bounds, then anything between b_1 and b_2 works, so we set

$$b = \frac{b_1 + b_2}{2} \tag{29}$$

- What if i doesn't violate the KKT conditions?
- What if $\eta \geq 0$?
- When do we stop?

Jordan Boyd-Graber | Boulder Slack SVMs |

- What if i doesn't violate the KKT conditions? Skip it!
- What if $\eta \geq 0$?
- When do we stop?

Jordan Boyd-Graber Boulder Slack SVMs

- What if i doesn't violate the KKT conditions? Skip it!
- What if $\eta \ge 0$? **Skip it!**
- When do we stop?

Jordan Boyd-Graber Boulder Slack SVMs

- What if i doesn't violate the KKT conditions? Skip it!
- What if $\eta \geq 0$? **Skip it!**
- When do we stop? Until we go through α 's without changing anything

Plan

Dual Objective

Algorithm Big Picture

The Algorithm

Recap

Recap

- SMO: Optimize objective function for two data points
- Convex problem: Will converge
- Relatively fast
- Gives good performance
- Next HW!

Jordan Boyd-Graber | Boulder Slack SVMs