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Single Hypothesis

What is the Rademacher complexity of a hypothesis set reduced to a single
hypothesis?
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Rademacher Identity 1

Prove

Ifa>0 fa<0
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Rademacher Identity 1

Prove
Rm (aH) = |a|Rm (H)

Ifa>0

sup Z oih(x) = (6)

heaH i—1
m
supz aoih(x;) = (7) Ifa<0
heH =
m
aiggga,h(x,) (8)
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Prove
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Rademacher Identity 1

Prove
Rm(aH) =a|Zm(H)
Ifa>0 fa<0
m m

;%%Za/h(x,-) = (6) /ii%zaih()q) = 9)
su ao; h x 7

hegz i (7) igEZaa h(x;) (10)
asu g h x 8 — —

hegz i (8) a igﬁz oi)h(x) (11)

Since o; and —o have the same distribution, %m(aH) || R m (H)
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Rademacher Identity 2

Prove
Rm(H+H') = R (H) + B (H)

(12)

Machine Learning: Jordan Boyd-Graber | Boulder Classification: Rademacher Complexity | 6 of 11



Rademacher Identity 2

Prove
Ron(H+H') = R (H) + B (H)

RBm(H+H) (12)
1 m
=—Egs| sup > 0i(h(x)+H(x)) (13)

heH,WeH [

(14)
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Rademacher Identity 2

Prove
Rom(H+H) = R (H) + B (H)

%m(H—i—_H’) (12)
:%Eas g H/;a, (x)+h (x,))} (13)
::—nEg,s _?,;’EZ" ih(x) | + Eos :SBZU h(x; ] (15)

Machine Learning: Jordan Boyd-Graber | Boulder Classification: Rademacher Complexity | 6 of 11



VC Dimension

To show VC dimension of a set of points
* Show that a set of d can be shattered
* Show that no set of d + 1 can be shattered
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Axis Aligned Rectangles
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Axis Aligned Rectangles
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Axis Aligned Rectangles
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Hyperplanes
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Hyperplanes
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Hyperplanes

+ + o+
{a) (M)

Figure 3.2 Un
All four points lie on the convex hull. (b)) Three points lic on the convex hull while

ralizable dichotomies for four points using hyperplanes in B2, (a)

the remaining poink 15 interior

Jordan Boyd-Graber Boulder Rademacher Complexity



Hyperplanes

+ + o+
{a) (M)

Figure 3.2 Unrealizable dichotomies for four points using hyperplanes in B2, {a)
All four points lie on the convex hull. (b)) Three points lic on the convex hull while
the remaining point is interior

In general, the VC dimension of d-dimensional hyperplanes is d + 1
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Finite Subsets

Show that the VC dimension of a finite hypothesis set H is at most Ig|H]|.
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¢ To shatter a set, it means that every point can take on a different binary
label h(x)
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Finite Subsets

Show that the VC dimension of a finite hypothesis set H is at most Ig|H]|.

¢ To shatter a set, it means that every point can take on a different binary
label h(x)

e If a set has d points, there are 29 ways to do that
e Each configuration requires a different hypothesis

* Solving for the number of hypotheses gives Ig|H|
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Next time

¢ Getting more practical
* SVMs

e Excellent theoretical properties
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