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Setup

Nothing new . . .

• Samples S = ((x1,y1), . . . ,(xm,ym))

• Labels yi = {−1,+1}
• Hypothesis h : X →{−1,+1}
• Training error: R̂(h) = 1

m

∑m
i 1 [h(xi) 6= yi ]
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An alternative derivation of training error

R̂(h) =
1

m

m
∑

i

1 [h(xi) 6= yi ] (1)

(2)

(3)

(4)
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R̂(h) =
1

m

m
∑

i

1 [h(xi) 6= yi ] (1)

=
1

m

m
∑

i

(

1 if (h(xi ,yi) == (1,−1) or (−1,1)

0 (h(xi ,yi) == (1,1) or (−1,−1)
(2)

(3)

(4)
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Correlation between predictions and labels
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(3)
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1

2
−

1
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∑
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Minimizing training error is thus equivalent to maximizing correlation

argmax
h

1

m

m
∑

i

yih(xi) (5)
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Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

σi =

(

+1 with prob .5

−1 with prob .5
(6)

This gives us Rademacher correlation—what’s the best that a random
classifier could do?

R̂S (H)≡Eσ



max
h∈H

1

m

m
∑

i

σih(xi)



 (7)
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+1 with prob .5

−1 with prob .5
(6)

This gives us Rademacher correlation—what’s the best that a random
classifier could do?

R̂S (H)≡Eσ



max
h∈H

1

m

m
∑

i

σih(xi)



 (7)

Notation: Ep [f ]≡
∑

x p(x)f (x)
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Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

σi =

(

+1 with prob .5

−1 with prob .5
(6)

This gives us Rademacher correlation—what’s the best that a random
classifier could do?

R̂S (H)≡Eσ



max
h∈H

1

m

m
∑

i

σih(xi)



 (7)

Note: Empirical Rademacher complexity is with respect to a sample.
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Rademacher Extrema

• What are the maximum values of Rademacher correlation?

|H|= 1 |H|= 2m

• Rademacher correlation is larger for more complicated hypothesis space.

• What if you’re right for stupid reasons?
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m
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�
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Generalizing Rademacher Complexity

We can generalize Rademacher complexity to consider all sets of a
particular size.

Rm (H) =ES∼Dm

�

R̂S (H)
�

(8)
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Generalizing Rademacher Complexity

Theorem

Convergence Bounds Let F be a family of functions mapping from Z to
[0,1], and let sample S = (z1, . . . ,zm) were zi ∼D for some distribution D
over Z . Define E [f ]≡Ez∼D [f (z)] and ÊS [f ]≡ 1

m

∑m
i=1 f (zi). With

probability greater than 1−δ for all f ∈ F:

E [f ]≤ Ês [f ] + 2Rm (F) +O







r

ln 1
δ

m






(8)
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m
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i=1 f (zi). With

probability greater than 1−δ for all f ∈ F:

E [f ]≤ Ês [f ] + 2Rm (F) +O







r

ln 1
δ

m






(8)

f is a surrogate for the accuracy of a hypothesis (mathematically convenient)
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Aside: McDiarmid’s Inequality

If we have a function:

|f (x1, . . . ,xi , . . .xm)− f (x1, . . . ,x ′i , . . . ,xm)| ≤ ci (9)

then:

Pr [f (x1, . . . ,xm)≥E [f (X1, . . . ,Xm)] +ε]≤ exp

¨

−2ε2
∑m

i c2
i

«

(10)

Proofs online and in Mohri (requires Martingale, constructing
Vk =E [V |x1 . . .xk ]−E [V |x1 . . .xk−1]).
What function do we care about for Rademacher complexity? Let’s define

Φ(S) = sup
f

�

E [f ]− ÊS [f ]
�

= sup
f

 

E [f ]−
1

m

∑

i

f (zi)

!

(11)
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Step 1: Bounding divergence from true Expectation

Lemma

Moving to Expectation With probability at least 1−δ,

Φ(S)≤Es [Φ(S)] +

q

ln 1
δ

2m

Since f (z1)∈ [0,1], changing any zi to z′i in the training set will change
1
m

∑

i f (zi) by at most 1
m , so we can apply McDiarmid’s inequality with

ε=

q

ln 1
δ

2m and ci = 1
m .
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Step 2: Comparing two different empirical expectations

Define a ghost sample S′= (z′1, . . . ,z′m)∼D. How much can two samples
from the same distribution vary?

Lemma

Two Different Samples

ES [Φ(S)] =ES

�

sup
f

(E [f ]− ÊS [f ])

�

(12)

(13)
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ES [Φ(S)] =ES

�

sup
f
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�
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=ES

�

sup
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�
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�

− ÊS [f ])

�

(13)

(14)

The expectation is equal to the expectation of the empirical expectation of all
sets S′
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�
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(15)

S and S′ are distinct random variables, so we can move inside the
expectation
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�

(12)

=ES

�

sup
f∈F

(ES′
�
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The expectation of a max over some function is at least the max of that
expectation over that function
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Step 3: Adding in Rademacher Variables

From S,S′ we’ll create T ,T ′ by swapping elements between S and S′ with
probability .5. This is still idependent, identically distributed (iid) from D. They
have the same distribution:

ÊS′ [f ]− ÊS [f ]∼ ÊT ′ [f ]− ÊT [f ] (15)

Let’s introduce σi :

ÊT ′ [f ]− ÊT [f ] =
1

m

(

f (zi)− f (z′i ) with prob .5

f (z′i )− f (zi) with prob .5
(16)

=
1

m

∑

i

σi(f (z′i )− f (zi)) (17)

Thus:
ES,S′

�

supf∈F

�

ÊS′ [f ]− ÊS [f ]
��

=ES,S′,σ

�

supf∈F

�
∑

iσi(f (z′i )− f (zi))
��

.
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ÊS′ [f ]− ÊS [f ]∼ ÊT ′ [f ]− ÊT [f ] (15)
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Step 4: Making These Rademacher Complexities

Before, we had ES,S′,σ

�

supf∈F

∑

iσi(f (z′i )− f (zi))
�

≤ES,S′,σ



sup f∈F

∑

i

σi f (z′i ) + sup f∈F

∑

i

(−σi)f (zi)



 (18)

(19)
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Taking the sup jointly must be less than or equal the individual sup.
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
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Linearity
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f∈F

∑

i
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=Rm (F) +Rm (F) (20)

Definition
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Putting the Pieces Together

With probability ≥ 1−δ:

Φ(S)≤ES [Φ(S)] +

r

ln 1
δ

2m
(21)

Step 1
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Putting the Pieces Together

With probability ≥ 1−δ:

sup
f

�

E [f ]− ÊS [h]
�

≤ES [Φ(S)] +

r

ln 1
δ

2m
(21)

Definition of Φ
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Putting the Pieces Together

With probability ≥ 1−δ:

E [f ]− ÊS [h]≤ES [Φ(S)] +

r

ln 1
δ

2m
(21)

Drop the sup, still true
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Putting the Pieces Together

With probability ≥ 1−δ:

E [f ]− ÊS [h]≤ES,S′

�

sup
f

(ÊS′ [f ]− ÊS [f ])

�

+

r

ln 1
δ

2m
(21)

Step 2
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Putting the Pieces Together

With probability ≥ 1−δ:

E [f ]− ÊS [h]≤ES,S′,σ



sup
f∈F

 

∑

i

σi(f (z′i )− f (zi))

!

+

r

ln 1
δ

2m
(21)

Step 3
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Putting the Pieces Together

With probability ≥ 1−δ:

E [f ]− ÊS [h]≤ 2Rm (F) +

r

ln 1
δ

2m
(21)

Step 4
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Putting the Pieces Together

With probability ≥ 1−δ:

E [f ]− ÊS [h]≤ 2Rm (F) +

r

ln 1
δ

2m
(21)

Recall that R̂S (F)≡Eσ
�

supf
1
m

∑

iσi f (zi)
�

, so we apply McDiarmid’s
inequality again (because f ∈ [0,1]):

R̂S (F)≤Rm (F) +

r

ln 1
δ

2m
(22)
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E [f ]≤ Ês [f ] + 2Rm (F) +O







r

ln 1
δ

m






(23)
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What about hypothesis classes?

Define:

Z ≡X ×{−1,+1} (24)

fh(x ,y)≡1 [h(x) 6= y] (25)

FH ≡{fh : h ∈H} (26)

We can use this to create expressions for generalization and empirical error:

R(h) =E(x ,y)∼D [1 [h(x) 6= y]] =E [fh] (27)

R̂(h) =
1

m

∑

i

1 [h(xi) 6= y] = ÊS [fh] (28)

We can plug this into our theorem!
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Generalization bounds

• We started with expectations

E [f ]≤ ÊS [f ] + 2R̂S (F) +O







r

ln 1
δ

m






(29)

• We also had our definition of the generalization and empirical error:

R(h) =E(x ,y)∼D [1 [h(x) 6= y]] =E [fh] R̂(h) =
1

m

∑

i

1 [h(xi) 6= y] = ÊS [fh]

• Combined with the previous result:

R̂S (FH) =
1

2
R̂S (H) (30)

• All together:

R(h)≤ R̂(h) +Rm (H) +O







r

log 1
δ

m






(31)
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Wrapup

• Interaction of data, complexity, and accuracy

• Still very theoretical

• Next up: How to evaluate generalizability of specific hypothesis classes
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Recap

• Rademacher complexity provides nice guarantees

R(h)≤ R̂(h) +Rm (H) +O







r

log 1
δ

2m






(32)

• But in practice hard to compute for real hypothesis classes

• Is there a relationship with simpler combinatorial measures?
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Growth Function

Define the growth function ΠH :N→N for a hypothesis set H as:

∀m ∈N,ΠH(m)≡ max
{x1,...,xm}∈X

�

�{(h(x1), . . . ,h(xm) : h ∈H}
�

� (33)

i.e., the number of ways m points can be classified using H.
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Rademacher Complexity vs. Growth Function

If G is a function taking values in {−1,+1}, then

Rm (G)≤

r

2 lnΠG(m)

m
(34)

Uses Masart’s lemma
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Vapnik-Chervonenkis Dimension

VC(H)≡max
�

m : ΠH(m) = 2m	 (35)

The size of the largest set that can be fully shattered by H.
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VC Dimension for Hypotheses

• Need upper and lower bounds

• Lower bound: example

• Upper bound: Prove that no set of d + 1 points can be shattered by H
(harder)
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Intervals

What is the VC dimension of [a,b] intervals on the real line.

• What about two points?

• Two points can be perfectly classified, so VC dimension ≥ 2

• What about three points?

• No set of three points can be shattered

• Thus, VC dimension of intervals is 2
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Sine Functions

• Consider hypothesis that classifies points on a line as either being above
or below a sine wave

{t→ sin(ωx) :ω∈R} (36)

• Can you shatter three points?

• Can you shatter four points?
• How many points can you shatter?
• Thus, VC dim of sine on line is∞
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Connecting VC with growth function

VC dimension obviously encodes the complexity of a hypothesis class, but
we want to connect that to Rademacher complexity and the growth function
so we can prove generalization bounds.

Theorem

Sauer’s Lemma Let H be a hypothesis set with VC dimension d. Then
∀m ∈N

ΠH(m)≤
d
∑

i=0

�

m

i

�

≡Φd (m) (37)

This is good because the sum when multiplied out becomes

(m
i ) =

m·(m−1)...
i! =O (md ). When we plug this into the learning error limits:

log(ΠH(2m)) = log(O (md )) =O (d logm).
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Proof of Sauer’s Lemma

Prelim:

We’ll proceed by induction. Our two base cases are:

• If m = 0, ΠH(m) = 1. You have no data, so there’s only one (degenerate)
labeling

• If d = 0, ΠH(m) = 1. If you can’t even shatter a single point, then it’s a
fixed function
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Induction Step

Assume that it holds for all m′, d ′ for which m′+ d ′ <m + d . We are given
H, |S|= m, S = 〈x1, . . . ,xm〉, and d is the VC dimension of H.

Build two new hypothesis spaces

Encodes where the extended set has differences on the first m points.
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Bounding Growth Function

|ΠH(S)|=|H1|+ |H2| (38)

≤
d
∑

i=0

�

m−1

i

�

+
d−1
∑

i=0

�

m−1

i

�

(39)

(40)
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|ΠH(S)|=|H1|+ |H2| (38)

≤
d
∑

i=0

�

m−1

i

�

+
d−1
∑

i=0

�

m−1

i

�

(39)

(40)

We can rewrite this as
∑d

i=0 (m−1
i−1 ) because ( x

−1) = 0.
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≤
d
∑

i=0

�

m−1

i

�

+
d−1
∑

i=0

�

m−1

i

�

(39)

=
d
∑

i=0

��

m−1

i

�

+

�

m−1

i −1

��

(40)

(41)
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|ΠH(S)|=|H1|+ |H2| (38)

≤
d
∑

i=0

�

m−1

i

�

+
d−1
∑

i=0

�

m−1

i

�

(39)

=
d
∑

i=0

��

m−1

i

�

+

�

m−1

i −1

��

(40)

=
d
∑

i=0

�

m

i

�

(41)

(42)

Pascal’s Triangle
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Bounding Growth Function

|ΠH(S)|=|H1|+ |H2| (38)

≤
d
∑

i=0

�

m−1

i

�

+
d−1
∑

i=0

�

m−1

i

�

(39)

=
d
∑

i=0

��

m−1

i

�

+

�

m−1

i −1

��

(40)

=
d
∑

i=0

�

m

i

�

(41)

=Φd (m) (42)

Machine Learning: Jordan Boyd-Graber | Boulder Classification: Rademacher Complexity | 26 of 29



Wait a minute . . .

Is this combinatorial expression really O (md )?
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Generalization Bounds

Combining our previous generalization results with Sauer’s lemma, we have
that for a hypothesis class H with VC dimension d , for any δ> 0 with
probability at least 1−δ, for any h ∈H,

R(h)≤ R̂(h) +

r

2d log em
d

m
+

r

log 1
δ

2m
(43)
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Whew!

• We now have some theory down

• We’re now going to see if we can find an algorithm that has good VC
dimension

• And works well in practice . . . Support Vector Machines

• In class: more VC dimension examples
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