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Setup

Nothing new ...

e Samples S=((x1,¥1),--+,(Xm, ¥m))

e Labels y;={—1,+1}

* Hypothesis h: X — {—1,+1}

¢ Training error: R(h) = 1> " 1[h(x;) # yi]
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An alternative derivation of training error

B(h) :% > Lln(x) £y

SRS



An alternative derivation of training error

1 m
—Z]l[h (x1) # ] (1)
ml
li () — (L or(h)
m&~ |0 X,,y,) =(1,1)or (—1,-1)
(3)
(4)
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An alternative derivation of training error

m

AR) =3 1 [p(x) #3] o

lz{1 it (h(x;, yi) == (1,—1) or (—1,1)

m 0 (h(x,yi)==(1,1)or (=1,-1)

:liw 3)

m &= 2
]

i
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An alternative derivation of training error

A(h) =%iﬂ [n(x) # v (1)
_lz"’:{1 it (h(xi,yi) == (1,—1) or (=1,1)

- ma|0 (h(xiy) == (1,1) or (~1,-1)

m - 2
1 1 &
=5 "o D yih(x) (4)
i
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An alternative derivation of training error

AlH) =~ > 1 TH(x) ] i

l2{1 it (h(x;, yi) == (1,—1) or (=1,1)

m 0 (h(x,yi)==(1,1)or(-1,-1)

i

1 1 &

Correlation between predictions and labels
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An alternative derivation of training error

m

ﬁ(h)z%Zﬂ[h(x,-)#y/] 1)

_lZ{1 it (h(x;,y;)==(1,—-1)or (=1,1)

m 0 (h(xi,yi)==(1,1)or(—1,—-1)

i

m - 2

L @
=- T Yin(X;

2 2m -

Minimizing training error is thus equivalent to maximizing correlation

1 m
argmax - Zy;h(x,-) (5)
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Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

+1  with prob .5
oi= . (6)
—1 with prob .5
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Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

g;=

| +1 withprob .5 )
—1 with prob .5

This gives us Rademacher correlation—what'’s the best that a random
classifier could do?

%s(H)EEU e m i

maleU,'h(x,-)} 7)
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Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

+1  with prob .5
gi= ) (6)
—1 with prob .5
This gives us Rademacher correlation—what’s the best that a random
classifier could do?
1 m
Rs(H)=Eq rpea&(EZU,-h(x,-)} (7)
1

Notation: E, [f] =, p(x)f(x)
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Playing with Correlation

Imagine where we replace true labels with Rademacher random variables

(6)

+1  with prob .5
o=
: —1 with prob .5

This gives us Rademacher correlation—what'’s the best that a random
classifier could do?

1

fpea’_)l(EZO',’h(X,‘):| (7)

Note: Empirical Rademacher complexity is with respect to a sample.

%s(H)=Eq
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Rademacher Extrema

e What are the maximum values of Rademacher correlation?
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Rademacher Extrema

e What are the maximum values of Rademacher correlation?

|H| =1 |H|=2m
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Rademacher Extrema

* What are the maximum values of Rademacher correlation?
|Hl =1

) H=2n
Eq [maxnen & 3.7 0ih(x)]
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Rademacher Extrema

* What are the maximum values of Rademacher correlation?
|Hl =1

h(x)Eq [,17, Z:ﬂ Uf}

|H|=2m
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Rademacher Extrema

* What are the maximum values of Rademacher correlation?
|Hl =1

h(x)Es [~ 0i] =0

|H|=2m
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Rademacher Extrema

* What are the maximum values of Rademacher correlation?
|Hl =1 |H|=2m
h(x))Eq [:—n Z,'.”a,-} =0 Es [maxheH :—n Z;naih(xi)]
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Rademacher Extrema

* What are the maximum values of Rademacher correlation?

h(Xi)Eo‘ [:—nz’mﬂ,} =0 g =1
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Rademacher Extrema

* What are the maximum values of Rademacher correlation?
h(Xi)Eo‘ [:—nz’mﬂ,} =0 g =1
* Rademacher correlation is larger for more complicated hypothesis space.

e What if you're right for stupid reasons?
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Generalizing Rademacher Complexity

We can generalize Rademacher complexity to consider all sets of a
particular size.
R (H) =Es~pm [R5 (H)] (8)
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Generalizing Rademacher Complexity

Theorem

Convergence Bounds Let F be a family of functions mapping from Z to
[0,1], and let sample S = (z1,...,zm) were z; ~ D for some distribution D
over Z. Define E [f] = E,~p [f(2)] and Es[f] = LT H(z). with
probability greater than1— 6 for all f€ F:

E[f] <Bs[f]+2%m(F)+0 | {| —2
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Generalizing Rademacher Complexity

Theorem

Convergence Bounds Let F be a family of functions mapping from Z to
[0,1], and let sample S = (z1,...,zm) were z; ~ D for some distribution D
over Z. Define E [f] = E,~p [f(2)] and Es[f] = LT H(z). with
probability greater than1— 6 for all f€ F:

. Int
E[f] < Be [f] + 2%m (F) + € % @)

f is a surrogate for the accuracy of a hypothesis (mathematically convenient)
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Aside: McDiarmid’s Inequality

If we have a function:

/

1F(X1s e Xiy oo o Xm) = F(Xts e X Xm) | S G (9)

then:

_0p2
pr[f(x1,...,xm)zE[f(x1,...,Xm)]+e]Sexp{ziecz} (10)
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Aside: McDiarmid’s Inequality

If we have a function:

[F(X1 s Xir oo Xm) = F(X15 e, Xy Xm) | S G (9)

then: 2
pr[f(x1,...,xm)zE[f(x1,...,Xm)]+e]Sexp{%} (10)

Y.c
] ]
Proofs online and in Mohri (requires Martingale, constructing
Vk=E[V]x1...x] —E[V|x1...xk-1])-
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Aside: McDiarmid’s Inequality

If we have a function:

[F(X1 s Xir oo Xm) = F(X15 e, Xy Xm) | S G (9)

then: 2
pr[f(x1,...,xm)zE[f(x1,...,Xm)]+e]Sexp{%} (10)

Y.c

] ]

Proofs online and in Mohri (requires Martingale, constructing
Vk=E[V]x1...x] —E[V|x1...xk-1])-

What function do we care about for Rademacher complexity? Let’s define

o(8) = sup (1]~ Es[1]) = sup (E [f]—%Zf(z,-)) (1)

i
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Step 1: Bounding divergence from true Expectation

Lemma
Moving to Expectation With probability at least1— 0,

O(S) <Eq[0(S)] + |/ &

Since f(z1) €0, 1], changing any z; to z; in the training set will change
#Z, f(z;) by at most lm so we can apply McDiarmid’s inequality with

In% 1
€= z—and ci=—.
m m
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Step 2: Comparing two different empirical expectations

Define a ghost sample S’ = (z},..., z/,) ~ D. How much can two samples
from the same distribution vary?

Lemma
Two Different Samples

Es[®(S)] =Es St;p(E[f]—fEs [1]) (12)
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Step 2: Comparing two different empirical expectations

Define a ghost sample S’ = (Z},...,z/.) ~ D. How much can two samples
from the same distribution vary?

Lemma
Two Different Samples

s [0(5)] ~Bs [sup( 1]~ s[1)] 12)
=Es [ng(Es’ [IAES’ [f]] —I@s[f])] (13)
(14)

The expectation is equal to the expectation of the empirical expectation of all
sets &’
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Step 2: Comparing two different empirical expectations
Define a ghost sample S’ = (z},..., z/,) ~ D. How much can two samples
from the same distribution vary?

Lemma
Two Different Samples

Es[®(S)] =Es -SLpr(]E [1] —fEs[f])] (12)
=Es -ngIE(Es' [Es (1] —Es[f])] (13)

_Es 'ng(ES, [Bs [f] - B[] )] (14)

_ (15)

S and &’ are distinct random variables, so we can move inside the
expectation
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Step 2: Comparing two different empirical expectations
Define a ghost sample S’ = (Z},...,z/,) ~ D. How much can two samples
from the same distribution vary?

Lemma
Two Different Samples

s [0(5)] ~8s [sup(1 - sl 12)
g5 [sup(as [ [~ sl (19
<Ese [sup(Bs [1-Bs1)) (14)

The expectation of a max over some function is at least the max of that
expectation over that function
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Step 3: Adding in Rademacher Variables

From S, S’ we'll create T, T’ by swapping elements between S and S’ with
probability .5. This is still idependent, identically distributed (iid) from D. They
have the same distribution:

Es [1-Es[f]~Ep []-Er[f] (15)
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Step 3: Adding in Rademacher Variables

From S, S’ we'll create T, T’ by swapping elements between S and S’ with
probability .5. This is still idependent, identically distributed (iid) from D. They
have the same distribution:

fg [f]—Ks[f] ~Bp [f] —Er [f] (15)
Let’s introduce o ;:
) with prob .5
Brl-Bri = {15 (16
,) f(z;) with prob .5

oi(f(z]) = () (17)
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Step 3: Adding in Rademacher Variables

From S, S’ we'll create T, T’ by swapping elements between S and S’ with
probability .5. This is still idependent, identically distributed (iid) from D. They
have the same distribution:

Eg [l -Bs[f]~Er [ -Er[1] (15)
Let’s introduce o ;:

B[] - [f]—1 f(zi) — f(z) with prob .5
r " m \ #(2) - #(z1) with prob .5

:—Za, '\~ f(z)) 17)

(16)

Thus:
Ess [SUpfeF (IAES’ [f] - s [f])] =Ess,0 [SupfeF (Z oi(f(z) - f(z,)))]
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Step 4: Making These Rademacher Complexities

Before, we had Es s & [sup,e,_-zia,-(f(zf) - f(z,-))]
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Step 4: Making These Rademacher Complexities

Before, we had Eg g/ [supfepziaf(f(zf) - f(z,-))]

<Esso SUprFZUif(Z//) + SUprFZ(_Ui)f(Zi) (18)
i 7

(19)

Taking the sup jointly must be less than or equal the individual sup.
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Step 4: Making These Rademacher Complexities

Before, we had Eg g/ [supfepzia,(f(zf) - f(z,-))]
<Ess,0 lSUpfeFZU (2)) + SupfeFZ(—U/)f(Z/)] (18)

I
<Esgs,s lsupZo if(Z

Sup HEss/a[supZ —0j) z,)} (19)
(S

feF

(20)

Linearity
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Step 4: Making These Rademacher Complexities

Before, we had Eg g & [supfepz oi(f(z))— f(z,))]

<Ess o ISUprFZU: )+ SUPfeFZ(—G/)f(Zi)] (18)

I

<Esg, |SU oif +Esg su a z 19
s8.0 IEEZ j ssUlfGEZ j /)} (19)

=Rm(F)+RZm(F) (20)
Definition
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Putting the Pieces Together

With probability > 1 —6:

®(S) <Es[®(S)]+

Step 1

Machine Learning: Jordan Boyd-Graber | Boulder

1
|ng

om (21)
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Putting the Pieces Together

With probability > 1 — 6

sup (=[]~ Bs[r]) <Es[®(S)] + \/';‘E

(21)
m
Definition of ®
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Putting the Pieces Together

With probability > 1 —6:

E[f]-Es[h] <Es[P(S)] +

Drop the sup, still true
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1
In5

om (21)
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Putting the Pieces Together

With probability > 1 — 6

E[f]-Es[h] <Ess sgp(@g [f]-Es [f])] + \/% (21)

Step 2
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Putting the Pieces Together

With probability > 1 —6:

E[f]-Es[h <Ess.o [?SE(ZU’(f(Z;)_f(Z’))) + == (1)

Step 3
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Putting the Pieces Together

With probability > 1 —6:

R In+
E [f] - Es[h] < 2% (F) + 2—:7 (21)

Step 4
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Putting the Pieces Together

With probability > 1 —6:

. Ini
E[f]—Es[h]gz,om(F)ﬂ/Z—rf’ (21)

Recall that Zs(F) =Eo [sup, - Z,O',-f(z,-)], so we apply McDiarmid’s
inequality again (because f € [0,1]):

~

Rs(F)< R (F)+ 14| =2 (22)
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Putting the Pieces Together

With probability > 1 — 6

Recall that #s (F) = Eq [sup, 1 Z,a;f(z;)], so we apply McDiarmid’s
inequality again (because f €0, 1]):

Putting the two together:

E [f] <Es[f] +2%m(F)+ 0 \/E

Machine Learning: Jordan Boyd-Graber | Boulder

E[f] - Es[h] < 2% (F) +

A

%s(F) < Rm(F)+

(22)

1
5

(23)

(21)
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What about hypothesis classes?

Define:
Z=Xx{-1,+1} (24)
fo(x, y) =1 [h(x) # y] (25)
Fn=i{f,:he H} (26)
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What about hypothesis classes?

Define:
Z=Xx{-1,+1} (24)
fo(x,y) =L [h(x) # y] (25)
Fn=i{f,:he H} (26)

We can use this to create expressions for generalization and empirical error:

R(h) =E(yy)~o [L[h(x) # y]] = E [f1] (27)

A(R) == > 1 [(x) £ ] = Bs 1] 28)
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What about hypothesis classes?

Define:
Z=Xx{-1,+1} (24)
fo(x, y) =1 [h(x) # y] (25)
Fn=i{f,:he H} (26)

We can use this to create expressions for generalization and empirical error:

R(h) =E(yy)~o [L[h(x) # y]] = E [f1] (27)

A(R) == > 1 [(x) £ ] = Bs 1] 28)

We can plug this into our theorem!

Machine Learning: Jordan Boyd-Graber | Boulder Classification: Rademacher Complexity | 13 0f29



Generalization bounds

* We started with expectations

E[f]<Es[f] +2%s(F)+ 0 (29)
e We also had our definition of the generalization and empirical error:
" 1 .
R() = Euyyo[LINC) £V =E[H] A(h)=—> 1[n(x) # y] = Bs]f]
i
e Combined with the previous result:

A 1 4
Rs(Fr)
¢ All together:

(30)
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Wrapup

¢ Interaction of data, complexity, and accuracy
e Still very theoretical

¢ Next up: How to evaluate generalizability of specific hypothesis classes
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Recap

* Rademacher complexity provides nice guarantees

. log &
R(h)<R(h)+%Rm(H)+ 0O o (32)

e But in practice hard to compute for real hypothesis classes

¢ |s there a relationship with simpler combinatorial measures?
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Growth Function

Define the growth function 1y : N — N for a hypothesis set H as:

VmeN,My(m)=  max__ [{(h(x1),..., h(xm): he H}| (33)

X100 XmbEX
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Growth Function

Define the growth function 1y : N — N for a hypothesis set H as:

VmeN,My(m)=  max__ [{(h(x1),..., h(xm): he H}| (33)

Xty xml€X

i.e., the number of ways m points can be classified using H.
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Rademacher Complexity vs. Growth Function

If G is a function taking values in {—1,+1}, then

2InMg(m)

Rm(G) < p

(34)

Uses Masart’s lemma
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Vapnik-Chervonenkis Dimension
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Vapnik-Chervonenkis Dimension

VC(H)=max{m:My(m)=2"} (35)

The size of the largest set that can be fully shattered by H.
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VC Dimension for Hypotheses

¢ Need upper and lower bounds
e Lower bound: example

¢ Upper bound: Prove that no set of d 4- 1 points can be shattered by H
(harder)
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Intervals

What is the VC dimension of [a, b] intervals on the real line.
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Intervals

What is the VC dimension of [a, b] intervals on the real line.

e What about two points?
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Intervals

What is the VC dimension of [a, b] intervals on the real line.
* What about two points?

—*
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Intervals

What is the VC dimension of [a, b] intervals on the real line.
* What about two points?

— [T _w
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Intervals

What is the VC dimension of [a, b] intervals on the real line.

e Two points can be perfectly classified, so VC dimension > 2
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Intervals

What is the VC dimension of [a, b] intervals on the real line.

e Two points can be perfectly classified, so VC dimension > 2

e What about three points?
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Intervals

What is the VC dimension of [a, b] intervals on the real line.

¢ Two points can be perfectly classified, so VC dimension > 2

* What about three points?

— ]
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Intervals

What is the VC dimension of [a, b] intervals on the real line.

e Two points can be perfectly classified, so VC dimension > 2
e What about three points?

* No set of three points can be shattered
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Intervals

What is the VC dimension of [a, b] intervals on the real line.

e Two points can be perfectly classified, so VC dimension > 2

What about three points?

No set of three points can be shattered

Thus, VC dimension of intervals is 2
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Sine Functions

¢ Consider hypothesis that classifies points on a line as either being above
or below a sine wave
{t—osin(wx): weR} (36)

¢ Can you shatter three points?

Machine Learni rdan Boyd-Graber | Boulder demacher Complexity | 22 of 29



Sine Functions

e Consider hypothesis that classifies points on a line as either being above
or below a sine wave
{t > sin(wx): weR} (36)

¢ Can you shatter three points?

>
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Sine Functions

¢ Consider hypothesis that classifies points on a line as either being above
or below a sine wave
{t—osin(wx): weR} (36)

¢ Can you shatter four points?
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Sine Functions

¢ Consider hypothesis that classifies points on a line as either being above
or below a sine wave
{t—osin(wx): weR} (36)

* How many points can you shatter?
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Sine Functions

¢ Consider hypothesis that classifies points on a line as either being above
or below a sine wave
{t—osin(wx): weR} (36)

e Thus, VC dim of sine on line is 0o
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Connecting VC with growth function

VC dimension obviously encodes the complexity of a hypothesis class, but
we want to connect that to Rademacher complexity and the growth function
S0 we can prove generalization bounds.
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Connecting VC with growth function

VC dimension obviously encodes the complexity of a hypothesis class, but
we want to connect that to Rademacher complexity and the growth function
S0 we can prove generalization bounds.

Theorem
Sauer’s Lemma Let H be a hypothesis set with VC dimension d. Then
VmeN J
m
My(m) < =dy(m 37
m<32(7) =outm) @)
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Connecting VC with growth function

VC dimension obviously encodes the complexity of a hypothesis class, but
we want to connect that to Rademacher complexity and the growth function
S0 we can prove generalization bounds.

Theorem
Sauer’s Lemma Let H be a hypothesis set with VC dimension d. Then

VmeN ;
Mu(m) <> (T) = bg(m) (37)

i=0

This is good because the sum when multiplied out becomes

(T) = M = 0 (m?). When we plug this into the learning error limits:

Iog(HH(Zm)) =log(0 (m?)) = 0 (dlogm).
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Proof of Sauer’s Lemma

Prelim:

(7= (""" + (%=])  This comes from Pascal’s Triangle
k<0

k- This convention is consistent with Pascal's Triangle
> m
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Proof of Sauer’s Lemma

Prelim:

(7= (""" + (%=])  This comes from Pascal’s Triangle
k<0

k- This convention is consistent with Pascal's Triangle
c>m

We’ll proceed by induction. Our two base cases are:

e If m=0, My(m)=1. You have no data, so there’s only one (degenerate)
labeling

 If d=0, My(m)=1. If you can’t even shatter a single point, then it's a
fixed function
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Induction Step

Assume that it holds for all n”’, d’ for which 7’ + o’ < m+ d. We are given
H,|S|=m, S={x4,...,Xm), and d is the VC dimension of H.
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Induction Step

Assume that it holds for all n”’, d’ for which 7’ + o’ < m+ d. We are given
H,|S|=m, S={x4,...,Xm), and d is the VC dimension of H.

Build two new hypothesis spaces

H Hy H

X1 Xy Xis-o Xm 1 Kyveo s Xy 1
hi 0 1 1 0 0 — hl O 1 1 O - bl O 1 1 0
h2 ¢ 1 1 0 1 7
h3 ¢ 1 1 1 0 — hdI 0 1 1 1
ha 1 0 0O 1 0 — hdid 1 0O 0O 1 - hd 1 0 0O 1
h 1 0 0 1 1
h6 1 1 0 0 1 — K6 1 1 0 O

Machine Learnil ordan Boyd-Graber | Boulder ificati Rademacher Complexity | 25 of 29



Bounding Growth Function

INH(S)I=IH1|+|Hel (38)
<i m—1 dz_E m—1 39
22 e

(40)
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Bounding Growth Function

INH(S)| =IH |+ |Ho| (38)
<i m—1 § m—1 39
2 e

(40)

We can rewrite this as Z/d:o (™) because (*) =0.
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Bounding Growth Function

IMH(S)| =IH: |+ |Ho| (38)

S(T)EC) e

=

S
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Bounding Growth Function

IMH(S)| =IHi| 4| Hel (38)
4 m—1 . (m—1
) -

S+ 0

; ('In) (41)

Pascal’s Triangle
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Bounding Growth Function

INH(S)| =IH: |+ |Ho| (38)

d (m—1) - (m—1)
< |+ . (39)
i=0 ! i=0 !
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Wait a minute ...

Is this combinatorial expression really 0 (m?)?
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Generalization Bounds

Combining our previous generalization results with Sauer’'s lemma, we have
that for a hypothesis class H with VC dimension d, for any > 0 with
probability at least 1 — &, for any he H,

. 2dlog ¥ log £
R(h)SR(h)+\/ (::d +\/095 (43)

2m
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Whew!

* We now have some theory down

* We'’re now going to see if we can find an algorithm that has good VC
dimension
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* We'’re now going to see if we can find an algorithm that has good VC
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e And works well in practice ... Support Vector Machines
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Whew!

* We now have some theory down

* We'’re now going to see if we can find an algorithm that has good VC
dimension

And works well in practice ... Support Vector Machines

¢ In class: more VC dimension examples
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