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Quiz!
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PAC Learnability: Rectangles

Is the hypothesis class of axis-aligned rectangles PAC learnable?
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PAC Learnability: Rectangles

Is the hypothesis class of axis-aligned rectangles PAC learnable?

A. Blumer, A. Ehrenfeucht, D. Haussler, and M.K. Warmuth. Learnability and
the Vapnik-Chervonenkis dimension. Journal of the ACM (JACM),
36(4):9297965, 1989
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What’s the learning algorithm

Call this hg, which we learned from data. hs € ¢
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Proof

Letc=[b, t] x [/, r].
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Proof

Let c=[b,t] x [/,r]. By construction, hs € ¢, so it can only give false
negatives.
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Proof

Let c=[b,t] x [/,r]. By construction, hs € ¢, so it can only give false
negatives. The region of error is precisely ¢\ hs.
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Proof

Let c=[b,t] x[/,r]. By construction, hs € ¢, so it can only give false
negatives. The region of error is precisely ¢\ hs. WLOG, assume
P(R) >e.
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Proof

Let c=[b,t] x [/,r]. By construction, hs € ¢, so it can only give false
negatives. The region of error is precisely ¢\ hs. WLOG, assume
P(R)>¢€. Consider rectangles R;...Rs:
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Proof

Let c=[b,t] x [/,r]. By construction, hs € ¢, so it can only give false
negatives. The region of error is precisely ¢\ hs. WLOG, assume
P(R)>e€. Consider rectangles R;...Ra:
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We get a bad hs only if we have an observation fall in this region. So let’s
bound this probability.
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Bounds

Prlerror] =Pr[u_,x & R] (1)
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Bounds

Prlerror] =Pr[u_,x & R] (1)
4

<> Prix¢R| 2)
i=1

=2 (1=P(R))" @

If we assume that P(R;) > £, then

.

e
m

Prlerror] <4 (1 — ;) 54-exp{—?} (4)
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Bounds

Prlerror] :Pr[U‘." x & R (1)
< Z Prix & Ri] (2
4

Z 4 (3)

If we assume that P(R;) > ¢, then
em me
Pr[error]§4(1 ——) 54-exp{——} (4)
4 4
Solving for m gives
4In4/6
m2= c (5)
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Concept Learning

Are Boolean conjunctions PAC learnable? Think of every feature as a
Boolean variable; in a given example the variable is given the value 1 if its
corresponding feature appears in the examples and 0 otherwise. In this way,
if the number of measured features is n the concept is represented as a
Boolean function ¢: §0,1} — {0, 1}. For example we could define a chair as
something that has four legs and you can sit on and is made of wood. Can
you learn such a conjunction concept over n variables?
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Algorithm

Start with
h=XiX1XoXo ... XpXn (6)
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Algorithm

Start with
h=XiX1XoXo ... XpXn (6)

For every positive example you see, remove the negation of all dimensions
present in that example.
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Algorithm

Start with
h=XiX1XoXo ... XpXn (6)

For every positive example you see, remove the negation of all dimensions
present in that example. Example: 10001, 11001, 10000, 11000
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Algorithm

Start with
h=XiX1XoXo ... XpXn (6)

For every positive example you see, remove the negation of all dimensions
present in that example. Example: 10001, 11001, 10000, 11000

o After first example, X1 XoX3X4 X5
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Algorithm

Start with

h=XiX1XoXo ... XpXn (6)
For every positive example you see, remove the negation of all dimensions
present in that example. Example: 10001, 11001, 10000, 11000
o After first example, X1 XoX3X4 X5

o After last example, x1 X3 X4
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Observations

¢ Having seen no data, h says no to everything

e Qur algorithm can be two specific. It might not say yes when it should.
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Observations

¢ Having seen no data, h says no to everything

e Qur algorithm can be two specific. It might not say yes when it should.

* We make an error on a literal if we’ve never seen it before (there are 2n
literals: x1, X1)
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Bounds

Let p(z) be the probability that our concept returns a positive example in
which literal z is false.
R(h) <D p(2) 7)
z

A literal z is bad if p(z) > 5.
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Bounds

Let p(z) be the probability that our concept returns a positive example in
which literal z is false.
R(h) <D p(2) 7)
z

A literal z is bad if p(z) > 5.
If h has no bad literals, then h will have error less than €.
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Solving for number of examples
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Solving for number of examples

2n 1
m>—|{In2n+In— (8)
€ 0
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3-DNF
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3-DNF

Not efficiently learnable unless P = NP.
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