
Automatic Classification of Quiz Bowl Questions
LIN/COS 280 Final Project

Kenneth Jenkins

1 Introduction

The goal of automatic classification is to determine
of which category out of a predefined set of cate-
gories a sample is most likely a member, given a
training set of already-classified samples. For this
project, I apply several classifiers to the problem of
automatically categorizing quiz bowl questions. The
American Competition Federation (ACF), in partic-
ular, makes past competition questions available in
online archives,1 but these archived questions are not
categorized. It would be of considerable use for col-
lege quiz bowl teams to have searchable archives of
categorized questions, and automating the catego-
rization of these questions would be preferable. To
this end, it seems the most successful system would
be one that can classify a question and compute a
confidence estimate of that classification; if the sys-
tem classifies only the questions it is relatively ‘sure’
of. The others could then be manually classified by
a human.

2 Data

The questions for the training corpus were taken
from http://www.carloangiuli.com/acfdb/, a
database of categorized quiz bowl questions from
the ACF Question Archive. [cite] The data set con-
tains 10697 classified questions, and was available for
download as a text file with easily-parsable format-
ting. Table 1 shows the breakdown of questions by
category and subcategory. Several duplicate ques-
tions were removed (including one apparently erro-
neous duplicate question which attributed Tractatus
Logico-Philosophicus to Cyrano de Bergerac.)

I took several normalization steps with the data
before using it to train the classifiers. I converted all
the words to lower case and removed all punctuation.
I also removed everything in between parentheses or
brackets, because these seemed to be used only for

1http://acf-quizbowl.com/archive.php

Category Subcategory

History 22.4%

American 32.8%
European 29.3%
World 24.8%
Ancient 13.1%

Literature 22.1%

European 52.5%
American 28.3%
World 18.3%
Language Arts 0.9%

Science 21.1%

Biology 26.9%
Physics 22.9%
Chemistry 22.2%
Mathematics 14.4%
Astronomy 7.8%
Earth Science 5.8%

Social Studies 10.5%

Religion/Mythology 39.5%
Geography 21.3%
Philosophy 19.7%
Psychology 7.8%
Economics 5.8%
Anthropology 5.8%

Fine Arts 19.5%
Art 39.8%
Music 47.5%
Other 12.7%

Other 4.4% Pop Culture 65.5%
Other 34.5%

Table 1: Categories present in the data set.

pronunciation or other cues for the benefit of the
reader of the question.

3 Method

For classification problems with more than two cat-
egories there are two general approaches. Say we
have k categories. The first approach is to train k
binary classifiers to distinguish the ith category from
all the rest. The classifier with the highest output
determines the category. The second approach is to
train 1

2k(k − 1) binary classifiers to distinguish be-

http://www.carloangiuli.com/acfdb/
http://acf-quizbowl.com/archive.php

tween each pair of categories. The category with the
most positive results is selected. In practice, the first
approach would likely be more efficient because it is
only O(n) in the number of classifiers required per
number of categories, while the second approach is
O(n2) in classifiers versus categories.

In this case, the Other category may present a bit
of a challenge. There is not likely to be many positive
distinguishing features for this category, so ideally we
would use a classification scheme which sorted into
the other five categories but was not forced to make a
choice; if the output was beneath a certain threshold
it would assign the Other category instead.

For a problem like the the quiz bowl questions, we
have a hierarchy of categories (categories containing
subcategories), which makes this problem different
from the several examples I have found in the liter-
ature. [citez!] For instance, there is a simpler prob-
lem to attempt: one could train and test classifiers
for just the six categories, which is presumably easier
than doing so for the 25 total subcategories. For the
larger problem of classifying category and subcate-
gory, one could go about it two different ways: we
could treat all the category-subcategory pairs as indi-
vidual categories, or we could split the problem into
two stages, first classifying the main category, and
then running subcategory classifiers specific to that
main category on the output from the first stage.

An easier task to consider would be to classify just
the main category (Literature, History, Science, So-
cial Studies, Fine Arts, and Other). Limiting to six
categories reduces the complexity required to imple-
ment the second general approach considerably. This
appears to be a relatively simple task, because there
are many words which are unique to a given cate-
gory. This suggests a very simple binary classifier as
detailed in §3.2.

3.1 Feature selection and weighting

Half the battle for automatic classification is the se-
lection of a suitable set of features to use for classi-
fication. For this task, the logical choice for features
are the words that make up the questions, but it is
not feasible to assign feature space vectors to each
document based on every single word in the corpus.
We want to make the classifiers as efficient as possi-
ble, so we want to choice words that are most distin-
guishing of a certain category. The nice thing about
these quiz bowl questions is that they have a diverse
lexicon given their length, and not surprisingly many
words appear only in one category. For instance, the
word “benzene” appears only in the Science category.

One pseudo-metric for feature weighting is the
well-known TF·IDF (term frequency–inverse docu-

ment frequency), which correlates terms with a given
document according to how often they appear in that
document times the reciprocal of the fraction of doc-
uments containing that term. While very common,
this metric is rather time-consuming to compute for
every word in every document in the testing corpus.

The traditional feature selection process is also
complicated in this case by the fact that each ques-
tion is very short, and may not contain any of the
selected features. That would not be good, because
there would be no possible way to distinguish zero-
vectored questions in different categories.

Alternatively, it has been suggested that TF·IDF
is not a very good feature weighting scheme and that
the so-called bi-normal separation (BNS) is a bet-
ter measure [For08]. According to Forman, the BNS
score for a given word w with respect to category Ci

is given by∣∣F−1(P (w | Ci))− F−1(P (w | ∼Ci))
∣∣

(where F−1 is the inverse normal cumulative distri-
bution function.) The basic idea is that for each
word in the training corpus, we compute two prob-
abilities: the maximum likelihood estimate that a
random word in a particular category is that par-
ticular word, and the maximum likelihood estimate
that a random word not in that category is the cho-
sen word. The best features should occur much more
often in one or the other, so we want to chose words
that have the greatest difference between these two
probabilities.

For my “modified Bayes classifier” (see §3.4) I em-
ployed a variant of the BNS score. As noted in
[For08], the inverse normal cumulative distribution
function is not available in common math libraries,
so I opted to use a natural logarithm instead. I com-
puted

log
(

P (w | Ci)
P (w | ∼Ci)

)
.

One nuance to this process is that it is actually
much simpler if we add a smoothing term, which
eliminates the difficulty of dividing by zero if a cer-
tain word does not appear at all outside a certain
category. It also adjusts for those words which ap-
pear very few times: for example, both “benzene”
and “acetylsalicylic” occur only in the Science cate-
gory, but “benzene” occurs more often than “acetyl-
salicylic.” With the smoothing term, “benzene” is
ranked as a better classifier because it is apparently
more closely associated with the category.

The best features will have the largest scores by
this measure (the greatest magnitude, either nega-
tive or positive). Ordering the features by this mea-

2

sure, we can select the top thousand or so to use for
each classifier.

3.2 Simple Classifier

The basic idea is to check whether a question has
more words which are in category A and not category
B, or more words which are in category B and not
in category A. More formally, let Ci be the set of
all words in category i. Then let Ci \ Cj denote the
set of all words in category i which are not also in
category j. Let Qk be the set of all words in question
k. Then we examine

∣∣Qk∩(Ci\Cj)
∣∣−∣∣Qk∩(Cj\Ci)

∣∣.
If this quantity is positive, we classify question k as
belonging to category i; if negative we classify the
question as belonging to category j. If both sets have
precisely the same cardinality, the classifier does not
choose a category for the question.

We run this classifier for each pair of categories,
and then each classifier’s result is taking as a vote
for or against a certain category. The category with
the highest number of votes is chosen.

[This may be better than the {first approach} be-
cause there are likely more words separated each pair
of categories than there are between one category
and all the others.]

3.3 Näıve Bayes

The assumption behind the näıve Bayes model is that
all the selected features are independent, i.e. each
feature has the same probability regardless of the
other features present.

I was not able to properly implement a näıve
Bayes classifier in Python, and I am not entirely sure
why not. Somehow the classifiers were not properly
scaled, with the result that every question was be-
ing classified into the Other category. However, I did
have some success with another classification scheme,
based on my failed attempt at näıve Bayes.

After my failed attempt with Bayes I turned to
the Java package Weka, which provides a number
of utilities for data mining, automatic classification,
and other wonderful things.2 I used the package’s
weka.classifiers.bayes.NaiveBayes.

3.4 Modified Bayes

For my own version of this classifier I computed mod-
ified BNS scores for each word-category in the cor-
pus. Then for each question to be classified, I aver-
aged the BNS score for every word in the question,
for each possible category. The category with the
highest average modified BNS score was chosen.

I also attempted to compute a confidence level for
each individual question’s automatic classification,

2http://www.cs.waikato.ac.nz/ml/weka/

but this did not help very much. In order to raise
the true positive rate to about 95% it was discarded
about half the input.

3.5 Support Vector Machine

The Weka package also provided an SVM
implementation. I used the package’s
weka.classifiers.functions.SMO with default
values.

4 Testing

I intended to employ the testing strategy used in
[DVDM01], in which the manually classified data is
split into tenths, from which 90% forms the train-
ing corpus and the remaining 10% forms the test-
ing corpus. If there was more time and comput-
ing resources, we could run ten trials (correspond-
ing to the cyclic permutations of the tenths) so as to
use all of the corpus for both training and testing,
but not at the same time. The Weka package used
the term “ten-fold cross-validation.” However, my
Python code for the modified Bayes classifier was so
slow that I ended up running only one of the 90/10
tests.

5 Results

We can represent the resents from most of these clas-
sifiers as confusion matrices, where the rows repre-
sent the actual category and the columns represent
the automatic classification. A perfect success would
be a diagonal matrix.

5.1 Main category classification

5.1.1 Simple classifier
The results from the simple classifier on the first

testing corpus are shown in Figure 1. As predicted,
the Other category is a difficult one to classify. Only
about 4% of the testing questions that were actually
in the Other category were successfully identified.

5.1.2 Modified Bayes classifier
The results from the modified näıve Bayes classi-

fier on the first testing corpus are shown in Figure 2.
The overall accuracy is slightly better, but still not
great.

5.2 Main- and sub-category classification

For kicks, I ran two of the default Weka classifiers:
a näıve Bayes classifier and a SVM classifier. The
comparison is shown in Table 2. Default feature se-
lection was used, and due to memory constraints on
my computer I was able to use only 1000 features.
The poor performance of these classifiers is likely due
to small feature space.

3

http://www.cs.waikato.ac.nz/ml/weka/

Social
History Literature Science Studies Fine Arts Other

History 192 16 0 11 0 0
Literature 8 231 1 9 1 0

Science 2 2 213 6 1 0
Social Studies 23 35 4 140 0 0

Fine Arts 5 25 0 3 84 0
Other 15 31 1 3 5 2

Figure 1: Simple classifier, first trial (testing corpus 0). Overall accuracy is
80.6% out of 1069 samples. Baseline accuracy would be 22.4% (if
we simply assigned every question the most common category.)

Social
History Literature Science Studies Fine Arts Other

History 199 3 0 3 1 13
Literature 1 224 1 5 3 16

Science 0 0 214 1 1 8
Social Studies 8 11 11 150 0 22

Fine Arts 0 4 0 0 107 6
Other 1 3 1 3 4 45

Figure 2: Modified näıve Bayes classifier, first trial (testing corpus 0). Overall
accuracy is 87.8% out of 1069 samples.

Näıve Bayes SVM
(ten-fold cross-validation) (single 90/10 split)

Accuracy 63.0% 64.2%

Table 2: Accuracy of Weka classifiers for category and subcategory.
Baseline accuracy 11.6%.

4

6 Conclusion

Much work remains to be done to find the best
method for the automatic classification of quiz bowl
questions. If the Weka classifiers are any indication,
an SVM is not much better than näıve Bayes for this
problem. The other conclusion that can be made
here is that my programming ability is somewhat
lacking.

7 References

[DVDM01] Nigel Dewdney, Carol VanEss-Dykema,
and Richard MacMillan. The form is the sub-
stance: Classification of genres in text. In Pro-
ceedings of the ACL 2001 Workshop on Human
Language Technology and Knowledge Manage-
ment, 2001.

[For08] George Forman. BNS feature scaling: An
improved representation over TF·IDF for SVM
text classification. In ACM 17th Conference on
Information and Knowledge Management, 2008.

This paper represents my own work in accordance
with University regulations.

5

	Introduction
	Data
	Method
	Feature selection and weighting
	Simple Classifier
	Naïve Bayes
	Modified Bayes
	Support Vector Machine

	Testing
	Results
	Main category classification
	Simple classifier
	Modified Bayes classifier

	Main- and sub-category classification

	Conclusion
	References

