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1 Introduction

If we run an experiment ten times with mutually exclusive outcomes X, Y , and

Z whose probabilities are known, the binomial theorem gives the probability

that there will be, say, 7 Xs, 3 Y s, and 0 Zs. Going the other way is more

interesting: given that there were 7 Xs, 3 Y s, and 0 Zs, can we infer the best

probabilities of X, Y , and Z? For instance, this is what we do when we train

an n-gram language model.1 Of course, this depends on what we mean by

“best.” In many contexts, the maximum likelihood estimate (here P (X) = .7,

P (Y ) = .3, P (Z) = 0) is ideal. If, however, we have some prior knowledge

about the distribution of probabilities, or want not the maximum likelihood but

minimum entropy, or have few observations relative to the number of possible

outcomes, then the maximum likelihood estimate is not necessarily ideal.

All three of the above apply to language models: we know a priori that no
1My work on this started in a computational linguistics REU under the mentorship of

Brian Roark (roark@cslu.ogi.edu, http://www.cslu.ogi.edu/people/roark/), but most of what

appears here is new.
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sequence of n words in human language, or “n-gram,” should have probability 0;

we want minimum entropy to minimize the language’s information content; and,

since all language models are trained on a finite amount of data, the number

of words in a training corpus is usually some small number like 108 or 1012,

and on data sets of such sizes, there will certainly be types of language use

that don’t show up, but should be given a nonzero probability. For instance,

if one trains a trigram language model by reading in trigrams from a corpus of

108 words and decreeing the probability of each trigram in the language to be

its frequency there, then no trigram will be assigned a probability between 0

and 10−8. However, this is exactly the range where most trigrams must fall: if

there are, say, 105 words in the lexicon, then there are 1015 trigrams, at most

108 of which can have frequency at least 10−8 in the corpus; this leaves the

overwhelming majority between 0 and 10−8. Algorithms to correct this are

called “smoothing” algorithms, after that we’d like to “smooth” some of the

probability from more frequently observed events to those never observed.

2 Background

The greatest advancement in the history of smoothing was the idea to simply

add a constant to the number of observations of each n-gram, as if one had

simply appended the dictionary to the training data. This was the greatest

advancement not because of any of its own merits (it’s easy to compute and

explain, but not good for much else), but because, by avoiding zero counts at

all, it reduced entropy from infinity (before, when an n-gram with count 0 in

the training data was observed, a probability of 0 would be assigned, giving
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infinite entropy) to something finite; since then we’ve just been chipping away

at fractions of bits.

There are many popular smoothing techniques, and most of them rely on the

“Good-Turing Estimate,” which uses the distribution of observation counts—

that an event was observed 0 times gives relatively little information, but the

number of such events is useful. For a statement, derivation, and applications

of this, including several of the most popular smoothing methods based on it,

see Chen and Goodman’s summary of smoothing techniques2

There are three problems with the Good-Turing estimate, however. The

first is aesthetic: when Chen and Goodman wrote their seminal paper, they

thought the original derivation so ugly that they created their own, a mess of

binomial coefficients and sums that was nevertheless a significant improvement.

The second is with high counts, which tend to have low counts of counts—when

the counts of counts approach 0, the reliability of the Good-Turing estimate

decreases, just when we should have the most information, since there’s a high

count. The third is generalizability: the estimate and its two derivations re-

quire the restriction of counts to integers. If, however, one wished to train a

language model not from a reliable corpus but from, say, speech recognizer out-

put consisting of words labeled with probabilities, then the above objections to

the ML estimate would still apply. However, we cannot apply Good-Turing di-

rectly here, because it requires that the number of events with a given count be

large—there may be many n-grams observed 3 times, but probably 0 observed

exactly π times.
2Stanley Chen and Joshua Goodman. An Empirical Study of Smoothing Techniques for

Language Modeling. 1998. http://research.microsoft.com/̃joshuago/tr-10-98.pdf.
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3 Methods

We first mathematically derive a generalization of the Good-Turing estimate;

later we’ll describe testing it. Specifically, we can calculate in two ways the

expected value of the probability that an observation w is of an event seen

exactly r + 1 times in N + 1 samples. First, some notation:

1. EN (X) is the expected value of X when we make N observations.

2. c(X) is the number of observations of the event X

3. |{X}| is the number of elements of X.

4. p(X|Y ) is the probability of X given Y .

Now, we want to calculate in two ways

EN+1(p(c(w) = r + 1)),

that is, the expected value of the probability that an observed word is one with

count r + 1. On one hand, if an event is seen r + 1 times in N + 1 samples, it

contributes r+1
N+1 to the probability, and we can simply multiply by the expected

number of events whose count is r + 1, that is,

r + 1
N + 1

EN+1(|{w : c(w) = r + 1}|) = EN+1(p(c(w) = r + 1)).

On the other hand, our observation w will be of an event seen exactly r+1 times

if and only if the same event occurs exactly r times in the other N observations.

The expected number of such events is EN (|{w : c(w) = r}|), and the probability

of our observation w given that it’s of one of those events is EN (p(w)|c(w) = r),

so

EN+1(p(c(w) = r + 1)) = EN (|{w : c(w) = r}|)EN (p(w)|c(w) = r).
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Putting these together gives the estimate

EN (p(w)|c(w) = r) =
r + 1
N + 1

EN+1(|{w : c(w) = r + 1})
EN (|{w : c(w) = r}|)

.

If we make the approximation that for large N , EN (|{w : c(w) = r}|) is ap-

proximately |{w : c(w) = r}| in one sample, this gives the probability of a word

with count r in terms of the distribution of counts; it’s exactly the Good-Turing

estimate.

Already, this fixes one of the three noted problems with the Good-Turing Es-

timate, the arbitrariness of its derivation. This nicer derivation also generalizes

easily to intervals of counts, allowing us to apply Good-Turing to the continuous

case and for high counts. The argument is the same; if I is an interval of counts,

then:

1
N + 1

EN+1(
∑

i:c(wi)∈I+1

c(wi)) =EN+1(p(c(w) ∈ I + 1))

=EN (|{w : c(w) ∈ I}|)EN (p(w)|c(w) ∈ I)

=EN (|{w : c(w) ∈ I}|)r
∗

N

r∗ ≈
∑

w:c(w)∈I+1 c(w)∑
w:c(w)∈I 1

.

The last line gives the corrected count r∗ of an event seen r times in terms of

events seen in some intervals I and I + 1 around r and r + 1; the size of these

intervals can be varied according to the scarcity of data. In particular, in the

testing we use three intervals: the smallest interval centered at r with at least 5

words, the smallest interval above r with at least 5 words (if it exists), and the

smallest interval below r with at least 5 words, then average the results.

A full test of the efficacy of this method would be prohibitively difficult,

because Good-Turing is only the foundation of most smoothing algorithms;
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in actual applications one would build Good-Turing into a more complicated

smoothing algorithm taking into account some of the structure of language

and sub-grams of n-grams3, so we instead test this new Good-Turing estimate

against no smoothing at all, additive smoothing, and the old Good-Turing. The

last of these is the most relevant baseline with which to compare the new Good-

Turing, since it’s what we’d replace; this comparison isn’t perfect because we

can’t tell whether improvements in Good-Turing would actually trickle up to

the full smoothing algorithms, but if the new Good-Turing does better than the

old one on raw data, it would be reasonable to assume that it does better in

actual use. Also, continuous data on which to test this are not readily available,

so we’ll content ourselves to test it on discrete data; for the continuous case (as

in, say, language modeling for resource-poor languages), there currently is no

competitor to the proposed variant Good-Turing. Hence all we test here is the

discrete case.

Some details of the testing: we divide the Brown corpus into 15 parts. A

language model was trained from each of them and smoothed with each of the

four smoothing methods list above, then tested on each of the other 14 sections.

All 15 · 14 · 4 results are printed. Also, the dictionary is the union of all words

that appear in the Brown corpus.

The attached tarball contains the code used for the testing described above

in NLTK. To run it, just import everything nltk, then everything from it, then

run print final results().

3This was, in fact, an entire thesis at Harvard by Chen & Goodman, above.
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4 Materials

We test using NLTK’s included Brown corpora, processed down to counts of

n-grams.

5 Results

• Average entropy per word without smoothing: ∞.

• Average entropy per word with Klingon smoothing: 7.573

• Average entropy per word with old GT smoothing: 1.753

• Average entropy per word with my GT smoothing: 7.546

These results are disappointing—the new Good-Turing smoothing did indeed

run, but barely performed better than the baseline Klingon smoothing algo-

rithm. There are two possible reasons for this. First, there could be an uncaught

bug in the code used to test the method, but the author spent 5 hours looking for

such a bug, and thinks it unlikely. Second, some of the kludgy approximations

used to make the smoothing calculations easier may have thrown off the results.

For instance, the 10 most frequently occurring words took almost all of the time

in early runs of the code—there is probably a data structure that avoids this,

but in the attached code, the 10 most frequently occurring words were simply
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calculated differently, and since they’re the most frequently occurring, errors in

them are particularly significant. Manual inspection of some of their calculated

values shows that they’re of reasonable magnitude, but could be off. Also, the

choice of intervals described above (for any count, one interval entirely below

that count, one entirely above, and one in the middle) was arbitrary, made on

the theory that they’d be easy to code and probably not significantly worse than

a better way of choosing the intervals, but I have no proof of this; the proper

choice of intervals isn’t contained in the nice derivation above.

6 Conclusion

Ultimately, however, the new Good-Turing method isn’t competing with the old

one, but extending it to places where no good smoothing method exists. For

more conservative choices of intervals, the new Good-Turing estimate equals the

old one, so certainly for small intervals they’re fairly close; so the new Good-

Turing estimate is almost as good when used conservatively, and can still be

extended to the continuous case. It won’t revolutionize smoothing, but it’s

better than nothing when no other methods exist.
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