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Our data reflect our world ...

= Word representations learned from massive amounts of data

= Reflect prejudices and messiness of our world
= But learned representations used for many tasks

o Detecting “bad” behavior online
o Matching resumes to jobs
o Recommendations
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The embedding captures

gender stereotypes and sexism.

DEFINITIONAL

(related [Schmidt ‘15])



Easier to debias an embedding
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Consistency of embedding stereotype

GloVe trained
on web crawl

she-he axis of GloVe webcrawl embedding

Ggnder bias in occupation words across embeddings
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Doesn’t matter source or algorithm



Bias encoded in some dimensions
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Analogies
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Bias Where it Shouldn’t Be
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Debiasing
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Debiasing
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Debiasing
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Debiasing
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Debiasing

Original embedding
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Debiased embedding
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Data are biased ...

= Qur data (societies) are biased
= Can we make algorithms better than the data?
= Can we define fairness for tasks like sentencing, loan approval, etc.
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Defining Fairness

What does non-discriminatory mean?

Target y, predictor  from features x and protected attribute a.

= Don’t want to remove a

= Don't want parity (p(y |A=a)=p(j|A=a’)
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Defining Fairness

What does non-discriminatory mean?

Target y, predictor  from features x and protected attribute a.

= Don’t want to remove a (correlations, accuracy disparity)

= Don't want parity (p(y |A=a)=p(j|A=a’)
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Defining Fairness

What does non-discriminatory mean?

Target y, predictor y from features x and protected attribute a.

= Don’t want to remove a (correlations, accuracy disparity)

= Don't want parity (p(y |A=a)= p(j | A= a’) (doesn't allow perfect
prediction)
Also, can have accuracy disparity: give loans to qualified A=0 and
random A=1
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Defining Fairness

What does non-discriminatory mean?

Target y, predictor y from features x and protected attribute a.

= Don’t want to remove a (correlations, accuracy disparity)

= Don't want parity (p(y |A=a)=p(j | A= a’) (doesn't allow perfect
prediction)

= Equalized odds:

p(7lY=y,A=a)=P(j|Y=y,A=a’) )

o Perfect predictor always satisfies
o Protects against accuracy disparity
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Fairness, Accountability, and Transparency

Like much of machine learning, we have problems and no clear
solutions

What I've presented here are just first steps

The important thing is to think about data, algorithms, and employing
them in a way that thinks through consequences

Don’t blindly trust algorithms / data
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