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Can SVMs Work Here?

yi(w · xi +b)≥ 1 (1)
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Trick: Allow for a few bad apples
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New objective function

min
w ,b,ξ

1

2
||w ||2 +C

∑

i=1

ξi
p (2)

subject to yi(w · xi +b)≥ 1−ξi ∧ξi ≥ 0, i ∈ [1,m]

� Standard margin

� How wrong a point is (slack variables)

� Tradeoff between margin and slack variables

� How bad wrongness scales
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Aside: Loss Functions

� Losses measure how bad a mistake is

� Important for slack as well

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 11



Aside: Loss Functions

� Losses measure how bad a mistake is

� Important for slack as well

x
0/1 Loss

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 11



Aside: Loss Functions

� Losses measure how bad a mistake is

� Important for slack as well

x

Linear
Hinge

0/1 Loss

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 11



Aside: Loss Functions

� Losses measure how bad a mistake is

� Important for slack as well

x

Quadratic Hinge

Linear
Hinge

0/1 Loss

Machine Learning: Jordan Boyd-Graber | UMD Introduction to Machine Learning | 5 / 11



Aside: Loss Functions

� Losses measure how bad a mistake is
� Important for slack as well

x

Quadratic Hinge

Linear
Hinge

0/1 Loss

We’ll focus on linear hinge loss
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Optimizing Constrained Functions

Theorem: Lagrange Multiplier Method

Given functions f (x1, . . .xn) and g(x1, . . .xn), the critical points of f
restricted to the set g = 0 are solutions to equations:

∂ f

∂ xi
(x1, . . .xn) =λ

∂ g

∂ xi
(x1, . . .xn) ∀i

g(x1, . . .xn) = 0

This is n+1 equations in the n+1 variables x1, . . .xn,λ.
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Lagrange Example

Maximize f (x ,y) =
p

xy subject to the constraint 20x +10y = 200.

� Compute derivatives
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� Create new systems of equations

1

2

s

y

x
= 20λ

1

2

√

√x

y
= 10λ

20x +10y = 200
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Lagrange Example

� Dividing the first equation by the second gives us

y

x
= 2 (3)

� which means y = 2x , plugging this into the constraint equation gives:

20x +10(2x) = 200

x = 5⇒ y = 10
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New Lagrangian

L (~w ,b, ~ξ, ~α, ~β) =
1

2
||w ||2 +C

m
∑

i=1

ξi (4)

−
m
∑

i=1

αi [yi(w · xi +b)−1+ξi ] (5)

−
m
∑

i=1

βiξi (6)

Taking the gradients (∇wL ,∇bL ,∇ξi
L ) and solving for zero gives us

m
∑

i=1

αiyi = 0 (7) ~w =
m
∑

i=1

αiyixi (8) αi +βi =C (9)
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Simplifying dual objective

m
∑

i=1

αiyi = 0 ~w =
m
∑

i=1

αiyixi
αi +βi =C

L =
1

2
‖~wi‖2−

m
∑

i

· ~xi −
m
∑

i

αiyib−
m
∑

i=1

βiξi (10)
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∑
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Simplifying dual objective
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∑
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First two terms are the same!
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Simplifying dual objective

m
∑

i=1

αiyi = 0 ~w =
m
∑

i=1

αiyixi
αi +βi =C

L = −
1

2

m
∑

i

m
∑

j

αiαjyiyj(~xj · ~xi)+
m
∑

i

αi (10)

Just like separable case, except that we add the constraint that αi ≤C!
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Wrapup

� Adding slack variables don’t break the SVM problem
� Very popular algorithm
� SVMLight (many options)
� Libsvm / Liblinear (very fast)
� Weka (friendly)
� pyml (Python focused)
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