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IR is worth a lot of money . . .



Prerequisites

� Search a “collection” of documents

� Each document contains terms (words)

� Users create queries
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General Problem

User

“tragic romance”

Author

“star-crossed lovers”
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What’s a word?

We’ll talk more about this later . . .

assume we know the answer.
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Bag of Words
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Boolean Retrieval

� Users express queries as a Boolean expression
� AND, OR, NOT
� Can be arbitrarily nested
� Retrieval is based on the notion of sets

� Any given query divides the collection into two sets: retrieved,
not-retrieved
� Pure Boolean systems do not define an ordering of the results
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Strengths and Weaknesses

� Strengths
� Precise, if you know the right strategies
� Precise, if you have an idea of what you’re looking for
� Implementations are fast and efficient

� Weaknesses
� Users must learn Boolean logic
� Boolean logic insufficient to capture the richness of language
� No control over size of result set: either too many hits or none
� When do you stop reading? All documents in the result set are considered

“equally good”
� What about partial matches? Documents that “don’t quite match” the query

may be useful also
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Ranked Retrieval

� Order documents by how likely they are to be relevant to the information
need
� Estimate relevance(q,di)
� Sort documents by relevance
� Display sorted results

� User model
� Present hits one screen at a time, best results first
� At any point, users can decide to stop looking

� How do we estimate relevance?
� Assume document is relevant if it has a lot of query terms
� Replace relevance with sim(q,di)
� Compute similarity of vector representations
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Representing documents

Each document is vector di =



wi ,1, . . .wi ,V

�

(each word is dimension)
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High-Dimensional Space (Heaps’ Law)

V = kDb (1)
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High-Dimensional Space (Heaps’ Law)

V = kDb (1) Vocabulary size
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High-Dimensional Space (Heaps’ Law)

V = kDb (1) Number of documents
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High-Dimensional Space (Heaps’ Law)

V = kDb (1) Constants (per-language, type of document)
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Intuitions

� Term weights consist of two components
� Local: how important is the term in this document?
� Global: how important is the term in the collection?

� Here’s the intuition:
� Terms that appear often in a document should get high weights
� Terms that appear in many documents should get low weights

� How do we capture this mathematically?
� Term frequency (local)
� Inverse document frequency (global)
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tf-idf Term Weighting

wi ,j = fi ,j log
�

D

di

�

(2)

� Word i ’s weight in document j

� Frequency of word i in document j

� Help with interpretation

� Tension: prediction or interpretation
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Frequency of Terms (Zipf’s Law)

The most frequent words (“the”) are everywhere but useless for queries.
The most useful words are relatively rare . . . but there are lots of them.

fi =
c

i
(3)

� The frequency of a word i is inversly proportional to

� The rank (in frequency) of word

� Scaled by a constant

Can’t just throw out useless words
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Zipf’s Law
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Similarity Metric

� “Angle” between vectors

cos(θ ) =
~dj · ~dk

|~dj || ~dk |
(4)

� More generally, dot (inner) product . . . normalized vectors

sim(dj ,dk) = ~dj · ~dk =
n
∑

i=1

wi ,jwi ,k (5)
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Evaluating Results

� TREC: set of “gold” relevant documents

� How many of the documents found?

� Annual bake-off of IR systems
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Precision and Recall

Precision vs. Recall of 
Good (non-spam) Email
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� Precision: Of what you
returned, how much was
right?

P =
|TP|

|TP|+ |FP|
(6)

� Recall: Of what could be
right, how much did you
find?

P =
|TP|

|TP|+ |FN|
(7)

� F -measure: geometric
mean
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