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Introduction

What unlocks translations?

15.10.13 rosetta-stone.jpeg (1011×1296)
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� Humans need parallel text to
understand new languages when
no speakers are round

� Rosetta stone: allowed us
understand to Egyptian

� Computers need the same
information

� Where do we get them?
� Some governments require

translations (Canada, EU, Hong
Kong)

� Newspapers
� Internet
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Introduction

Pieces of Machine Translation System
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Introduction

Terminology

� Source language: f (foreign)

� Target language: e (english)
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Word Based Translation Systems

Collect Statistics

Look at a parallel corpus (German text along with English translation)
Translation of Haus Count
house 8,000
building 1,600
home 200
household 150
shell 50
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Word Based Translation Systems

Estimate Translation Probabilities

Maximum likelihood estimation

pf (e) =



























0.8 if e = house,

0.16 if e = building,

0.02 if e = home,

0.015 if e = household,

0.005 if e = shell.
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Word Based Translation Systems

Alignment

� In a parallel text (or when we translate), we align words in one language
with the words in the other

das Haus ist klein

the house is small

1 2 3 4

1 2 3 4

� Word positions are numbered 1–4
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Word Based Translation Systems

Alignment Function

� Formalizing alignment with an alignment function

� Mapping an English target word at position i to a German source word
at position j with a function a : i→ j

� Example
a : {1→ 1,2→ 2,3→ 3,4→ 4}
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Word Based Translation Systems

Reordering

Words may be reordered during translation

das Hausistklein

the house is small
1 2 3 4

1 2 3 4

a : {1→ 3,2→ 4,3→ 2,4→ 1}
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Word Based Translation Systems

One-to-Many Translation

A source word may translate into multiple target words

das Haus ist klitzeklein

the house is very small
1 2 3 4

1 2 3 4

5

a : {1→ 1,2→ 2,3→ 3,4→ 4,5→ 4}
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Word Based Translation Systems

Dropping Words

Words may be dropped when translated
(German article das is dropped)

das Haus ist klein

house is small
1 2 3

1 2 3 4

a : {1→ 2,2→ 3,3→ 4}
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Word Based Translation Systems

Inserting Words

� Words may be added during translation
� The English just does not have an equivalent in German
� We still need to map it to something: special null token

das Haus ist klein

the house is just small

NULL

1 2 3 4

1 2 3 4

5

0

a : {1→ 1,2→ 2,3→ 3,4→ 0,5→ 4}
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Word Based Translation Systems

A family of lexical translation models

� A family translation models

� Uncreatively named: Model 1, Model 2, . . .

� Foundation of all modern translation algorithms

� First up: Model 1
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Word Based Translation Systems

IBM Model 1

� Generative model: break up translation process into smaller steps
� IBM Model 1 only uses lexical translation

� Translation probability
� for a foreign sentence f =(f1, ..., flf ) of length lf
� to an English sentence e =(e1, ...,ele) of length le
� with an alignment of each English word ej to a foreign word fi according to

the alignment function a : j→ i

p(e,a|f)=
ε

(lf +1)le

le
∏

j=1

t(ej |f a(j))

� parameter ε is a normalization constant
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Word Based Translation Systems

Example

das Haus ist klein
e t(e|f)
the 0.7
that 0.15
which 0.075
who 0.05
this 0.025

e t(e|f)
house 0.8
building 0.16
home 0.02
family 0.015
shell 0.005

e t(e|f)
is 0.8
’s 0.16
exists 0.02
has 0.015
are 0.005

e t(e|f)
small 0.4
little 0.4
short 0.1
minor 0.06
petty 0.04

p(e,a | f ) =
ε

54
× t(the |das)× t(house |Haus)× t(is | ist)× t(small |klein)

=
ε

54
×0.7×0.8×0.8×0.4

= 0.00029ε
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Learning the Models

Learning Lexical Translation Models

� We would like to estimate the lexical translation probabilities t(e|f ) from
a parallel corpus

� ... but we do not have the alignments
� Chicken and egg problem
� if we had the alignments,
→ we could estimate the parameters of our generative model

� if we had the parameters,
→ we could estimate the alignments
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Learning the Models

EM Algorithm

� Incomplete data
� if we had complete data, would could estimate model
� if we had model, we could fill in the gaps in the data

� Expectation Maximization (EM) in a nutshell
1. initialize model parameters (e.g. uniform)
2. assign probabilities to the missing data
3. estimate model parameters from completed data
4. iterate steps 2–3 until convergence
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Learning the Models

EM Algorithm

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

� Initial step: all alignments equally likely

� Model learns that, e.g., la is often aligned with the
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Learning the Models

EM Algorithm

... la maison ... la maison blue ... la fleur ...

... the house ... the blue house ... the flower ...

� After one iteration

� Alignments, e.g., between la and the are more likely
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Learning the Models

EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

� After another iteration

� It becomes apparent that alignments, e.g., between fleur and flower are
more likely (pigeon hole principle)
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Learning the Models

EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

� Convergence

� Inherent hidden structure revealed by EM
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Learning the Models

EM Algorithm

... la maison ... la maison bleu ... la fleur ...

... the house ... the blue house ... the flower ...

p(la|the) = 0.453
p(le|the) = 0.334

p(maison|house) = 0.876
p(bleu|blue) = 0.563

...

� Parameter estimation from the aligned corpus
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Learning the Models

IBM Model 1 and EM

� EM Algorithm consists of two steps
� Expectation-Step: Apply model to the data
� parts of the model are hidden (here: alignments)
� using the model, assign probabilities to possible values

� Maximization-Step: Estimate model from data
� take assign values as fact
� collect counts (weighted by probabilities)
� estimate model from counts

� Iterate these steps until convergence
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Learning the Models

IBM Model 1 and EM

� We need to be able to compute:
� Expectation-Step: probability of alignments
� Maximization-Step: count collection
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Learning the Models

IBM Model 1 and EM

� Probabilities
p(the|la) = 0.7 p(house|la) = 0.05

p(the|maison) = 0.1 p(house|maison) = 0.8
� Alignments

IBM Model 1 and EM

• Probabilities
p(the|la) = 0.7 p(house|la) = 0.05

p(the|maison) = 0.1 p(house|maison) = 0.8

• Alignments

la •
maison•

the•
house•

la •
maison•

the•
house•

@
@
@

la •
maison•

the•
house•,

,
, la •

maison•
the•
house•

@
@
@,

,
,

p(e, a|f) = 0.56 p(e, a|f) = 0.035 p(e, a|f) = 0.08 p(e, a|f) = 0.005

p(a|e, f) = 0.824 p(a|e, f) = 0.052 p(a|e, f) = 0.118 p(a|e, f) = 0.007

• Counts
c(the|la) = 0.824 + 0.052 c(house|la) = 0.052 + 0.007

c(the|maison) = 0.118 + 0.007 c(house|maison) = 0.824 + 0.118

Chapter 4: Word-Based Models 21

� Counts
c(the|la) = 0.824+0.052 c(house|la) = 0.052+0.007

c(the|maison) = 0.118+0.007 c(house|maison) = 0.824+0.118
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Learning the Models

IBM Model 1 and EM: Expectation Step

� We need to compute p(a|e, f)

� Applying the chain rule:

p(a|e, f) =
p(e,a|f)
p(e|f)

� We already have the formula for p(e,a|f) (definition of Model 1)
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Learning the Models

IBM Model 1 and EM: Expectation Step

� We need to compute p(e|f)

p(e|f) =
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a

p(e,a|f)
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Learning the Models

IBM Model 1 and EM: Expectation Step

� We need to compute p(e|f)

p(e|f) =
∑

a

p(e,a|f)

=

lf
∑

a(1)=0

· · ·
lf
∑

a(le)=0
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Learning the Models
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(lf +1)le
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Learning the Models

IBM Model 1 and EM: Expectation Step

p(e|f) =
lf
∑

a(1)=0

...
lf
∑

a(le)=0

ε

(lf +1)le

le
∏

j=1

t(ej |fa(j))
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Learning the Models

IBM Model 1 and EM: Expectation Step
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Learning the Models

IBM Model 1 and EM: Expectation Step

p(e|f) =
lf
∑

a(1)=0

...
lf
∑

a(le)=0

ε

(lf +1)le

le
∏

j=1

t(ej |fa(j))

=
ε

(lf +1)le

lf
∑

a(1)=0

· · ·
lf
∑

a(le)=0

le
∏

j=1

t(ej |fa(j))

=
ε

(lf +1)le

le
∏

j=1

lf
∑

i=0

t(ej |fi)

� Note the algebra trick in the last line
� removes the need for an exponential number of products
� this makes IBM Model 1 estimation tractable
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Learning the Models

The Trick

(case le = lf = 2)

2
∑

a(1)=0

2
∑

a(2)=0

=
ε

32

2
∏

j=1

t(ej |fa(j))=

= t(e1|f0) t(e2|f0)+ t(e1|f0) t(e2|f1)+ t(e1|f0) t(e2|f2)+
+ t(e1|f1) t(e2|f0)+ t(e1|f1) t(e2|f1)+ t(e1|f1) t(e2|f2)+
+ t(e1|f2) t(e2|f0)+ t(e1|f2) t(e2|f1)+ t(e1|f2) t(e2|f2)=

= t(e1|f0)(t(e2|f0)+ t(e2|f1)+ t(e2|f2))+
+ t(e1|f1)(t(e2|f1)+ t(e2|f1)+ t(e2|f2))+
+ t(e1|f2)(t(e2|f2)+ t(e2|f1)+ t(e2|f2))=

= (t(e1|f0)+ t(e1|f1)+ t(e1|f2))(t(e2|f2)+ t(e2|f1)+ t(e2|f2))
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Learning the Models

IBM Model 1 and EM: Expectation Step

� Combine what we have:

p(a|e, f) = p(e,a|f)/p(e|f)

=

ε
(lf+1)le

∏le
j=1 t(ej |fa(j))

ε
(lf+1)le

∏le
j=1

∑lf
i=0 t(ej |fi)

=

le
∏

j=1

t(ej |fa(j))
∑lf

i=0 t(ej |fi)
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Learning the Models

IBM Model 1 and EM: Maximization Step

� Now we have to collect counts

� Evidence from a sentence pair e,f that word e is a translation of word
f :

c(e|f ;e, f) =
∑

a

p(a|e, f)
le
∑

j=1

δ(e,ej)δ(f , fa(j))

� With the same simplication as before:

c(e|f ;e, f) =
t(e|f )
∑lf

i=0 t(e|fi)

le
∑

j=1

δ(e,ej)

lf
∑

i=0

δ(f , fi)
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Learning the Models

IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

t(e | f ;Training Corpus) =

∑

(e,f) c(e | f ;e, f))
∑

f ′
∑

(e,f) c(e | f ′;e, f))

To compute the probability of “keyboard”
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Learning the Models

IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

t(e | f ;Training Corpus) =

∑

(e,f) c(e | f ;e, f))
∑

f ′
∑

(e,f) c(e | f ′;e, f))

Being translated from “Tastatur”
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Learning the Models

IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

t(e | f ;Training Corpus) =

∑

(e,f) c(e | f ;e, f))
∑

f ′
∑

(e,f) c(e | f ′;e, f))

Go over all of the training data in your corpus (translated sentence pairs)
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Learning the Models

IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

t(e | f ;Training Corpus) =

∑

(e,f) c(e | f ;e, f))
∑

f ′
∑

(e,f) c(e | f ′;e, f))

Take the expected counts of translating “Tastatur” into “keyboard”
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Learning the Models

IBM Model 1 and EM: Maximization Step

After collecting these counts over a corpus, we can estimate the model:

t(e | f ;Training Corpus) =

∑

(e,f) c(e | f ;e, f))
∑

f ′
∑

(e,f) c(e | f ′;e, f))

And divide that by the extected counts of translating “keyboard” from
anything
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Learning the Models

IBM Model 1 and EM: Pseudocode

1: initialize t(e|f) uniformly
2: while not converged do
3: . initialize
4: count(e|f ) = 0 for all e, f
5: total(f ) = 0 for all f
6: for sentence pairs (e,f) do
7: . compute normalization
8: for words e in e do
9: s-total(e) = 0
10: for words f in f do
11: s-total(e) += t(e|f)
12: . collect counts
13: for words e in e do
14: for words f in f do
15: count(e|f ) += t(e|f)

s-total(e)

16: total(f ) += t(e|f)
s-total(e)

1: while not converged
(cont.) do

2: . estimate
probabilities

3: for foreign words f do
4: for English words

e do
5: t(e | f ) =

count(e | f)
total(f)
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Learning the Models

Convergence

das Haus

the house

das Buch

the book

ein Buch

a book
e f initial 1st it. 2nd it. . . . final

the das 0.25 0.5 0.6364 . . . 1
book das 0.25 0.25 0.1818 . . . 0
house das 0.25 0.25 0.1818 . . . 0

the buch 0.25 0.25 0.1818 . . . 0
book buch 0.25 0.5 0.6364 . . . 1

a buch 0.25 0.25 0.1818 . . . 0
book ein 0.25 0.5 0.4286 . . . 0

a ein 0.25 0.5 0.5714 . . . 1
the haus 0.25 0.5 0.4286 . . . 0

house haus 0.25 0.5 0.5714 . . . 1
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Learning the Models

Ensuring Fluent Output

� Our translation model cannot decide between small and little
� Sometime one is preferred over the other:
� small step: 2,070,000 occurrences in the Google index
� little step: 257,000 occurrences in the Google index

� Language model
� estimate how likely a string is English
� based on n-gram statistics

p(e) = p(e1,e2, . . . ,en)

= p(e1)p(e2|e1) . . .p(en|e1,e2, . . . ,en−1)

' p(e1)p(e2|e1) . . .p(en|en−2,en−1)
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Learning the Models

Noisy Channel Model

� We would like to integrate a language model

� Bayes rule

argmaxe p(e|f) = argmaxe
p(f|e) p(e)

p(f)

= argmaxe p(f|e) p(e)
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Learning the Models

Noisy Channel Model

� Applying Bayes rule also called noisy channel model
� we observe a distorted message R (here: a foreign string f)
� we have a model on how the message is distorted (here: translation model)
� we have a model on what messages are probably (here: language model)
� we want to recover the original message S (here: an English string e)
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Everything Else

Higher IBM Models

IBM Model 1 lexical translation
IBM Model 2 adds absolute reordering model
IBM Model 3 adds fertility model
IBM Model 4 relative reordering model
IBM Model 5 fixes deficiency

� Only IBM Model 1 has global maximum
� training of a higher IBM model builds on previous model

� Compuationally biggest change in Model 3
� trick to simplify estimation does not work anymore
→ exhaustive count collection becomes computationally too expensive
� sampling over high probability alignments is used instead
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Everything Else

Legacy

� IBM Models were the pioneering models in statistical machine
translation

� Introduced important concepts
� generative model
� EM training
� reordering models

� Only used for niche applications as translation model

� . . . but still in common use for word alignment (e.g., GIZA++ toolkit)
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Everything Else

Word Alignment

Given a sentence pair, which words correspond to each other?

house

the

in

stay

will

he

that

assumes

michael

m
ic

ha
el

ge
ht

da
vo

n

au
s

da
ss

er im ha
us

bl
ei

bt

,
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Everything Else

Word Alignment?

here

live

not

does

john

jo
hn

hi
er

ni
ch

t

w
oh

nt

??

Is the English word does aligned to
the German wohnt (verb) or nicht (negation) or neither?
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Everything Else

Word Alignment?

bucket

the

kicked

john

jo
hn

in
s

gr
as

s

bi
ss

How do the idioms kicked the bucket and biss ins grass match up?
Outside this exceptional context, bucket is never a good translation for

grass
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Everything Else

Summary

� Lexical translation

� Alignment

� Expectation Maximization (EM) Algorithm

� Noisy Channel Model

� IBM Models

� Word Alignment

� Alternate models next
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