

Midterm Review

Computational Linguistics: Jordan Boyd-Graber University of Maryland PCFG, LOGISTIC REGRESSION, TRANSDUCERS

Roadmap

- Answer your questions
- Go through examples of free response questions

Your Questions

Logistic Regression / Feature Engineering

Take *V* to be the set of possible words (e.g. "the", "cat", "dog", ...). Take *V'* to be the set of all words in *V* **plus** their reverses (e.g. "the", "eht", "cat", "tac", "dog", "god"). You can assume that there are no palindromes in *v* (e.g. "eye"). You want a logistic regression that models $(x, y) : x \in V, y \in V'$ pairs as follows:

- With probability $\frac{1}{2}$ he chooses y to be identical to x
- With probability $\frac{1}{3}$ he chooses y to be the reverse of x
- With probability ¹/₆ he chooses y to be some string that is neither x nor the reverse of x

Create a logistic regression (i.e. supply features *f* and weights θ) of the form:

$$p(y|x,\vec{\theta}) = \frac{\exp\sum_{i}\theta_{i}f_{i}(x,y)}{\sum_{y'}\exp\sum_{i}\theta_{i}f_{i}(x,y')}$$
(1)

that models Nathan's process perfectly.

Logistic Regression

Features

- **1.** 1 iff x == y (id)
- **2.** 1 iff rev(x) == y (rev)
- 3. 1 always one (bias)

Logistic Regression

Features

- **1.** 1 iff x == y (id)
- 2. 1 iff rev(x) == y (rev)
- 3. 1 always one (bias)

$$\exp \left\{ \theta_{id} + \theta_{bias} \right\} = \frac{1}{2}$$
(2)
$$\exp \left\{ \theta_{rev} + \theta_{bias} \right\} = \frac{1}{3}$$
(3)
$$\left\{ V' - 2 \right\} \exp \left\{ \theta_{bias} \right\} = \frac{1}{2}$$
(4)
(5)

Solving for parameters

$$\theta_{id} + \theta_{bias} = -\log 2$$
 (6)

$$\theta_{rev} + \theta_{bias} = -\log 3$$
 (7)

$$\theta_{bias} + \log(V' - 2) = -\log 6 \tag{8}$$

Solving for parameters

$$\theta_{id} + \theta_{bias} = -\log 2$$
 (6)

$$\theta_{rev} + \theta_{bias} = -\log 3$$
 (7)

$$\theta_{bias} + \log(V' - 2) = -\log 6 \tag{8}$$

$$\theta_{id} = \log 3 + \log(V' - 2) \tag{9}$$

$$\theta_{rev} = \log 2 + \log(V' - 2) \tag{10}$$

$$\theta_{bias} = -\log 6 - \log (V' - 2) \tag{11}$$

Suppose we have the following language model over the alphabet $\{a, b\}$.

Bigram	Probability
<i>p</i> (<i>a</i> <s>)</s>	0.45
p(b <s>)</s>	0.45
<i>p</i> (<s>)</s>	0.1
p(a a)	0.6
p(b a)	0.2
<i>p</i> (<i>a</i>)	0.2
p(a b)	0.2
p(b b)	0.4
p(b)	0.4

- Write a pcfg with non-terminals and weights such that it is equivalent to this language model. You should not need more than three non-terminals.
- Compute the probability of the string <s> a a b </s> using the original language model and the corresponding pcfg derivation to show that they're equivalent.

PCFG + LM

FST

For any binary string x, let w(x) denote the the number of 1's in x.

- For any binary string x and any integer i, $0 \le i < w(x)$, let f(x, i) denote the number of 0's between the *i*th 1 and the $(i + 1)^{st}$ 1 in the binary string 1*x*, where we index the w(x) + 1 1's in 1*x* from left to right starting at zero. Example: If x = 11000100, then w(x) = 3, f(x, 0) = 0, f(x, 1) = 0, f(x, 2) = 3, and f(x, i) is undefined for $i \ge 3$.
- For any binary string x, let g(x) denote the binary string of length w(x) with ith bit (indexing the bits from left to right starting at zero) equal to the parity of f(x, i) (that is, 0 if even, 1 if odd). Example: If x = 11000100, then g(x) = 001.

Design a finite state transducer that maps any given input binary string x to the output binary string g(x).

FST