
Dependency Parsing

Computational Linguistics: Jordan Boyd-Graber
University of Maryland
INTRO / CHART PARSING

Adapted from slides by Neelamadhav Gantayat and Ryan MacDonald

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 1 / 28

Motivation

Dependency Syntax

� Turns sentence into syntactic structure

� Essential for information extraction and other NLP tasks

Lucien Tesnière, 1959

The sentence is an organized whole, the constituent elements of which are
words. Every word that belongs to a sentence ceases by itself to be
isolated as in the dictionary. Between the word and its neighbors, the mind
percieves connections, the totality of which forms the structure of the
sentence. The structural connections establish dependency relations
between the words.

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 2 / 28

Motivation

Dependency Grammar

� Basic Assumption: Syntactic structure essentially consists of lexical
items linked by binary asymmetrical relations called dependencies.

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 3 / 28

Motivation

Example of dependency parser output

Figure: Output of Stanford dependency parser

� Verb has an artificial root

� Notion of phrases: “by” and its children

� So how do we choose these edges?

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 4 / 28

Motivation

Example of dependency parser output

Figure: Output of Stanford dependency parser

� Verb has an artificial root

� Notion of phrases: “by” and its children

� So how do we choose these edges?

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 4 / 28

Motivation

Criteria for dependency

D is likely a dependent of head H in construction C:

� H determines syntactic category of C and can often replace C

� H gives semantic specification of C; D specifies H

� H is obligatory; D may be optional

� H selectes D and determines whether D is obligatory

� The form of D depends on H (agreement or government)

� The linear position of D is specified with reference to H

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 5 / 28

Motivation

Which direction?

Some clear cases . . .

� Modifiers: “nmod” and “vmod”

� Verb slots: “subject” and “object”

ROOT Economic news suddenly affected financial markets

W

root

W

nmod

W

subj

W

vmod

W

obj

W

nmod

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 6 / 28

Motivation

Which direction?

Some tricky cases . . .

� Complex verb groups

� Subordinate clauses

� Coordination

� Prepositions

� Punctuation

I can see that they rely on this and that.

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 7 / 28

Motivation

Which direction?

Some tricky cases . . .

� Complex verb groups

� Subordinate clauses

� Coordination

� Prepositions

� Punctuation

I can see that they rely on this and that.

W W W

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 7 / 28

Motivation

Which direction?

Some tricky cases . . .

� Complex verb groups

� Subordinate clauses

� Coordination

� Prepositions

� Punctuation

I can see that they rely on this and that.

W W W

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 7 / 28

Motivation

Which direction?

Some tricky cases . . .

� Complex verb groups

� Subordinate clauses

� Coordination

� Prepositions

� Punctuation

I can see that they rely on this and that.

W W WW W

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 7 / 28

Motivation

Which direction?

Some tricky cases . . .

� Complex verb groups

� Subordinate clauses

� Coordination

� Prepositions

� Punctuation

I can see that they rely on this and that.

W W WW W

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 7 / 28

Motivation

Which direction?

Some tricky cases . . .

� Complex verb groups

� Subordinate clauses

� Coordination

� Prepositions

� Punctuation

I can see that they rely on this and that.

W W WW W W W

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 7 / 28

Motivation

Which direction?

Some tricky cases . . .

� Complex verb groups

� Subordinate clauses

� Coordination

� Prepositions

� Punctuation

I can see that they rely on this and that.

W W WW W W W

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 7 / 28

Motivation

Which direction?

Some tricky cases . . .

� Complex verb groups

� Subordinate clauses

� Coordination

� Prepositions

� Punctuation

I can see that they rely on this and that.

W W WW W W WW W

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 7 / 28

Motivation

Which direction?

Some tricky cases . . .

� Complex verb groups

� Subordinate clauses

� Coordination

� Prepositions

� Punctuation

I can see that they rely on this and that.

W W WW W W WW W W

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 7 / 28

Motivation

Which direction?

Some tricky cases . . .

� Complex verb groups

� Subordinate clauses

� Coordination

� Prepositions

� Punctuation

I can see that they rely on this and that.

W W WW W W WW W W

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 7 / 28

Motivation

Dependency Parsing

� Input: Sentence x =w0,w1, ...,wn

� Output: Dependency graph G = (V ,A) for x where:
� V = 0,1, ...,n is the vertex set,
� A is the arc set, i.e., (i , j ,k) ∈ A represents a dependency from wi to wj with

label lk ∈ L
� Notational Conventions
� i→ j ≡ ∃k : (i , j ,k) ∈ A (unlabeled dependency)
� i↔ j ≡ i→∨j→ i (undirected dependency)
� i→∗j ≡ i = j ∨∃i ′ : i→ i ′, i ′→∗j (unlabeled closure)
� i↔∗j ≡ i ∨∃i ′ : i↔ i ′,′ i↔∗j (undirected closure)

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 8 / 28

Motivation

Conditions

� Intuitions
� Syntactic structure is complete (Connectedness)
� Syntactic structure is hierarchical (Acyclic)
� Every word has at most one syntactic head (Single-Head)

� Connectedness is enforced by adding special root node

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 9 / 28

Motivation

Conditions

� Connected: ∀i , j ∈ V , i↔∗j
� Acyclic: If i→ j , then not j→∗i
� Single-head: If i→ j , then not i ′→ j∀i ′ 6= i

� Projective: If i→ j , then i→∗i ′ for any i ′ such that i < i ′ < j or j < i ′ < i .

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 10 / 28

Motivation

Projectivity

� Equivalent to planar embedding

� Most theoretical frameworks do not assume projectivity

� Non-projective structures needed for free word order and long-distance
dependencies

Non-projective example

� The algorithm later we’ll discuss is projective

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 11 / 28

Algorithms for Dependency Parsing

� Many algorithms exist (good overview in
Kübler et al)

� We will focus on a arc-factored projective
model
� arc-factored: Score factorizes over edges
� projective: no crossing lines (planar

embedding)

� This is a common, but not universal
assumption

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 12 / 28

Algorithms for Dependency Parsing

How good is a given tree?

1. score(G) = score(V ,A) ∈R
2. Arc-factored assumption:

score(G) =
∑

(wi ,r ,wj)∈A

ψwi ,r ,wj
(1)

3. Further simplification for class:

score(G) =
∑

(wi ,wj)∈A

ψwi ,wj
(2)

4. You can think about this probabilistically when

ψwi ,wj
≡ log

�

p((wi ,wj) ∈ A)
�

(3)

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 13 / 28

Algorithms for Dependency Parsing

Dynamic Programming

� A parser should avoid re-analyzing sub-strings because the analysis of
a substring is independent of the rest of the parse.

� The parsers exploration of its search space can exploit this
independence: dynamic programming (CS) / chart parsing (ling)

� Once solutions to sub-problems have been accumulated, solve the
overall problem by composing them

� Sub-trees are stored in a chart, which records all substructures:
� re-parsing: sub-trees are looked up, not reparsed
� ambiguity: chart implicitly stores all parses

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 14 / 28

Algorithms for Dependency Parsing

Central Idea: Spans

� Like Viterbi algorithm, we’ll solve sub problems to find the overall
optimum

� Our overall goal is to find the best parse for the entire sentence

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 15 / 28

Algorithms for Dependency Parsing

Central Idea: Spans

� Like Viterbi algorithm, we’ll solve sub problems to find the overall
optimum

� Our overall goal is to find the best parse for the entire sentence

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 15 / 28

Algorithms for Dependency Parsing

Central Idea: Spans

� Like Viterbi algorithm, we’ll solve sub problems to find the overall
optimum

� Our overall goal is to find the best parse for the entire sentence

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 15 / 28

Algorithms for Dependency Parsing

Central Idea: Spans

� Like Viterbi algorithm, we’ll solve sub problems to find the overall
optimum

� Our overall goal is to find the best parse for the entire sentence

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 15 / 28

Algorithms for Dependency Parsing

Central Idea: Spans

� Like Viterbi algorithm, we’ll solve sub problems to find the overall
optimum

� Our overall goal is to find the best parse for the entire sentence

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 15 / 28

Algorithms for Dependency Parsing

Central Idea: Spans

� Like Viterbi algorithm, we’ll solve sub problems to find the overall
optimum

� Our overall goal is to find the best parse for the entire sentence

LEFT RIGHT

COMPLETE

INCOMPLETE

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 15 / 28

Algorithms for Dependency Parsing

Central Idea: Spans

� To do this, we’ll find the best parse for contiguous spans of the
sentence, characterized by
� start 0 . . .n
� stop 0 . . .n
� direction←,→
� completeness ◦, ·

� Each span gets an entry in a 4D chart (same as 2D chart for POS
tagging)

� Find the overall tree that gives highest score

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 16 / 28

Algorithms for Dependency Parsing

Right Complete Spans

� We write the total score of these
spans C[s][t][→][·]

� “Root” of this subtree is at word s

� Can have arbitrary substructure
until word t , but cannot take
additional right children

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 17 / 28

Algorithms for Dependency Parsing

Left Complete Spans

� We write the total score of these
spans C[s][t][←][·]

� “Root” of this subtree is at word t

� Can have arbitrary substructure
until word s, but cannot take
additional left children

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 18 / 28

Algorithms for Dependency Parsing

Right Incomplete Spans

� We write the total score of these
spans C[s][t][→][◦]

� “Root” of this subtree is at word s

� Can have arbitrary substructure
until word t , but can take
additional right children

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 19 / 28

Algorithms for Dependency Parsing

Right Incomplete Spans

� We write the total score of these
spans C[s][t][→][◦]

� “Root” of this subtree is at word s

� Can have arbitrary substructure
until word t , but can take
additional right children

Can accept
additional right

children

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 19 / 28

Algorithms for Dependency Parsing

Left Incomplete Spans

� We write the total score of these
spans C[s][t][←][◦]

� “Root” of this subtree is at word t

� Can have arbitrary substructure
until word s, but can take
additional left children

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 20 / 28

Algorithms for Dependency Parsing

Left Incomplete Spans

Can accept
additional left

children

� We write the total score of these
spans C[s][t][←][◦]

� “Root” of this subtree is at word t

� Can have arbitrary substructure
until word s, but can take
additional left children

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 20 / 28

Algorithms for Dependency Parsing

Dynamic Programming Intuition

C[0][L][→][·] contains the best score for the overall tree.

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 21 / 28

Algorithms for Dependency Parsing

Dynamic Programming Intuition

C[0][L][→][·] contains the best score for the overall tree.

Where's the main verb?

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 21 / 28

Algorithms for Dependency Parsing

Dynamic Programming Intuition

C[0][L][→][·] contains the best score for the overall tree.

Where's the main verb?

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 21 / 28

Algorithms for Dependency Parsing

Dynamic Programming Intuition

C[0][L][→][·] contains the best score for the overall tree.

Where's the main verb?

What are the right
children of the root?

What are the left
children of the
 main verb?

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 21 / 28

Algorithms for Dependency Parsing

Dynamic Programming Intuition

C[0][L][→][·] contains the best score for the overall tree.

Where's the main verb?

What are the right
children of the verb?

What are the right
children of the root?

What are the left
children of the
 main verb?

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 21 / 28

Algorithms for Dependency Parsing

Building Incomplete Spans

Left incomplete spans are built by joining left complete to right complete

C[s][t][←][◦] = max
s≤q<t

C[s][q][→][·]+C[q+1][t][←][·]+λ(wt ,ws) (4)

?

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 22 / 28

Algorithms for Dependency Parsing

Building Incomplete Spans

Right incomplete spans are built by joining right complete to left complete

C[s][t][→][◦] = max s≤q<tC[s][q][→][·]+C[q+1][t][←][·]+λ(ws ,wt) (4)

?

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 22 / 28

Algorithms for Dependency Parsing

Building Incomplete Spans

Right incomplete spans are built by joining right complete to left complete

C[s][t][→][◦] = max s≤q<tC[s][q][→][·]+C[q+1][t][←][·]+λ(ws ,wt) (4)

?Dynamic Programming

When we compute the score for any span, we consider all possible ways
that the span could have been built.

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 22 / 28

Algorithms for Dependency Parsing

Building Incomplete Spans

Right incomplete spans are built by joining right complete to left complete

C[s][t][→][◦] = max s≤q<tC[s][q][→][·]+C[q+1][t][←][·]+λ(ws ,wt) (4)

?

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 22 / 28

Algorithms for Dependency Parsing

Completing Spans

Right complete spans are built by taking an incomplete right span and then
“completing” it with a right complete span
C[s][t][→][·] =maxs<q≤t C[s][q][→][◦]+C[q][t][→][·]

?

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 23 / 28

Algorithms for Dependency Parsing

Completing Spans

Left complete spans are built by taking an incomplete left span and then
“completing” it with a left complete span
C[s][t][←][·] =maxs≤q<t C[s][q][←][·]+C[q][t][←][◦]

?

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 23 / 28

Algorithms for Dependency Parsing

Example Sentence

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 24 / 28

Algorithms for Dependency Parsing

Example Sentence

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 24 / 28

Algorithms for Dependency Parsing

Example Sentence

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 24 / 28

Algorithms for Dependency Parsing

Example Sentence

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 24 / 28

Algorithms for Dependency Parsing

Example Sentence

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 24 / 28

Algorithms for Dependency Parsing

Example Sentence

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 24 / 28

Algorithms for Dependency Parsing

Example Sentence

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 24 / 28

Algorithms for Dependency Parsing

Example Sentence

Final step

Look at cell at corresponding to 0 to the length of the sentence, complete,
and directed to the right. That is the best parse.

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 24 / 28

Algorithms for Dependency Parsing

What’s left: Breadcrumbs and Complexity

� As you build the chart, you must keep track of what the best subtrees
were to construct each cell; call this b

� Then look at b[0][L][→][·], and recursively build the tree
� Complexity is O(n3):
� Table is size O(n2)
� Each cell requires at most n possible subtrees

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 25 / 28

Algorithms for Dependency Parsing

Extensions to Dependency Parsing

� Horizontal and vertical Markovization (node depends on siblings and
grandparents in tree—logical!)
� “saw with telescope” more likely than “bridge with telescope” (grandparent)
� “fast sports car” more likely than “fast slow car” (sibling)

� Graph algorithms: allow non-projectivity
� Sequential processing (next!)

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 26 / 28

Algorithms for Dependency Parsing

Extensions to Dependency Parsing

� Horizontal and vertical Markovization (node depends on siblings and
grandparents in tree—logical!)
� “saw with telescope” more likely than “bridge with telescope” (grandparent)
� “fast sports car” more likely than “fast slow car” (sibling)

� Graph algorithms: allow non-projectivity
� Sequential processing (next!)

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 26 / 28

Evaluation and Estimation

Where does the attachment score come from?

� Language model: vertical rather than horizontal
� How likely is the noun “bagel” the child of the “verb” eat?
� Back off to noun being the child of the verb “eat” . . .
� Back off to a noun being the child of a verb

� Discriminative models: minimize errors

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 27 / 28

Evaluation and Estimation

Where does the attachment score come from?

� Language model: vertical rather than horizontal
� How likely is the noun “bagel” the child of the “verb” eat?
� Back off to noun being the child of the verb “eat” . . .
� Back off to a noun being the child of a verb

� Discriminative models: minimize errors

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 27 / 28

Evaluation and Estimation

Evaluation Methodology

� How many sentences are exactly correct

� Edge accuracy
1. Labeled attachment score (LAS):

i.e. Tokens with correct head and label
2. Unlabeled attachment score (UAS):

i.e. Tokens with correct head
3. Label accuracy (LA):

i.e. Tokens with correct label

� Performance on downstream task (e.g., information extraction)

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 28 / 28

Evaluation and Estimation

Evaluation Methodology

� How many sentences are exactly correct
� Edge accuracy

1. Labeled attachment score (LAS):
i.e. Tokens with correct head and label

2. Unlabeled attachment score (UAS):
i.e. Tokens with correct head

3. Label accuracy (LA):
i.e. Tokens with correct label

� Performance on downstream task (e.g., information extraction)

Computational Linguistics: Jordan Boyd-Graber | UMD Dependency Parsing | 28 / 28

	Motivation
	Algorithms for Dependency Parsing
	Evaluation and Estimation

