
FSTs and Morphology

Computational Linguistics: Jordan Boyd-Graber
University of Maryland
OCTOBER 9, 2018

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 1 / 1



Roadmap

By the end of this class you should . . .

� Be able to write FSAs and FSTs

� Give examples of inflectional and derivational morphology

� Understand the challenges of morphology

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 2 / 1



Why Morphology

Typical Pipeline for nlp Tasks

1. Find the “units of meaning”

2. Do “shallow” analysis (pos tagging)

3. Do sentence-level analysis (parsing, srl)

4. Do document-level analysis (topic models, classification)

5. Extrinsic task (question answering)

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 3 / 1



Why Morphology

Typical Pipeline for nlp Tasks

1. Find the “units of meaning”

2. Do “shallow” analysis (pos tagging)

3. Do sentence-level analysis (parsing, srl)

4. Do document-level analysis (topic models, classification)

5. Extrinsic task (question answering)

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 3 / 1



Why Morphology

Typical Pipeline for nlp Tasks

1. Find the “units of meaning”

2. Do “shallow” analysis (pos tagging)

3. Do sentence-level analysis (parsing, srl)

4. Do document-level analysis (topic models, classification)

5. Extrinsic task (question answering)

This class is (mostly) about English . . .

But if we were in Turkey, Finland, or Egypt, this part of the class would take
weeks or months. An important step that is really easy in English.

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 3 / 1



Why Morphology

Why morphology

Morpheme

Smallest unit of language that carries meaning

� “books”: two morphemes (“book” and “s”), one syllable

� “unladylike”: three morphemes, four syllables

� To do an analysis of language, we must do an analysis of the most
fundamental unit of language!

� This subfield of linguistics is called morphology

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 4 / 1



Why Morphology

Definitions

Derivational

You have a new word derived from an existing word that alters the
meaning

� Nominalization: computerization, appointee, killer

� Adjectivization: computational, clueless, embraceable

Inflectional

You have a variation of a word that expresses grammatical contrast

� tense, number, person

� word class doesn’t change

� “The pizza guy comes at noon” (from “come”)

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 5 / 1



Why Morphology

Definitions

� Root: common to a set of derived or inflected forms

� Stem: root or roots of a word together with derivational affixes

� Affix: bound morpheme that comes after or within a root or stem

� Clitic: a morpheme that functions like a word but doesn’t appear on its
own (e.g., the ’ve in “I’ve”)

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 6 / 1



Why Morphology

Examples

� Rechts+schutz+ver+sicher+ungs+gesell+schaft+en: Legal protection
insurance policy (German)

� uygar+laş+tır+ama+dık+larımız+dan+mış+sınız+casına: Behaving as if
you are among those whom we could not cause to become civilized
(Turkish)

� “tú amaste” “ellos aman” “yo amaría” (Spanish)

� “I eat”, “he eats”, “they’re eating”, “I ate” (English)

� “wo ai”, “ni ai”, “ni.men ai” (Chinese)

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 7 / 1



Why Morphology

Comparative Morphology

� Chinese is very easy
� English is fairly simple and regular
� Few irregular verbs, but they’re frequent
� Derivational morphology is very productive (e.g., “faxed”, “Skyped”,

“Brittaed”)

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 8 / 1



Finite State Automaton

A Simple Problem

� We want to know whether a word is in a language or not
� We’ll get to transforming string to morpheme in a bit

� For English, it’s possible to get by just with making a list

� Much harder for other languages

� Even for English, you miss out on derivations and inflections

� Turn to a tool called Finite State Automaton (FSA)

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 9 / 1



Finite State Automaton

A Simple Problem

� We want to know whether a word is in a language or not
� We’ll get to transforming string to morpheme in a bit

� For English, it’s possible to get by just with making a list

� Much harder for other languages

� Even for English, you miss out on derivations and inflections

� Turn to a tool called Finite State Automaton (FSA)

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 9 / 1



Finite State Automaton

Defining FSAs

q2q1 b

a

a

Input Accept Transition

State

b

START

FSA over alphabet {a,b}

� We define a language to be a set
of strings over some alphabet Σ

� A set of states Q

� a designated start state q0

� a set of accepting final states
F ⊂Q

� edges: given current state qi and
input x ∈Σ, gives new state qj

� Important tip: every state should
have an edge for every element in
alphabet

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 10 / 1



Finite State Automaton

Defining FSAs

q2q1 b

a

a

Input Accept Transition

State

b

START

FSA over alphabet {a,b}

� We define a language to be a set
of strings over some alphabet Σ

� A set of states Q

� a designated start state q0

� a set of accepting final states
F ⊂Q

� edges: given current state qi and
input x ∈Σ, gives new state qj

� Important tip: every state should
have an edge for every element in
alphabet

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 10 / 1



Finite State Automaton

Defining FSAs

q2q1 b

a

a

Input Accept Transition

State

b

START

FSA over alphabet {a,b}

� We define a language to be a set
of strings over some alphabet Σ

� A set of states Q

� a designated start state q0

� a set of accepting final states
F ⊂Q

� edges: given current state qi and
input x ∈Σ, gives new state qj

� Important tip: every state should
have an edge for every element in
alphabet

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 10 / 1



Finite State Automaton

Defining FSAs

q2q1 b

a

a

Input Accept Transition

State

b

START

FSA over alphabet {a,b}

� We define a language to be a set
of strings over some alphabet Σ

� A set of states Q

� a designated start state q0

� a set of accepting final states
F ⊂Q

� edges: given current state qi and
input x ∈Σ, gives new state qj

� Important tip: every state should
have an edge for every element in
alphabet

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 10 / 1



Finite State Automaton

Defining FSAs

q2q1 b

a

a

Input Accept Transition

State

b

START

FSA over alphabet {a,b}

� We define a language to be a set
of strings over some alphabet Σ

� A set of states Q

� a designated start state q0

� a set of accepting final states
F ⊂Q

� edges: given current state qi and
input x ∈Σ, gives new state qj

� Important tip: every state should
have an edge for every element in
alphabet

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 10 / 1



Finite State Automaton

Defining FSAs

q2q1 b

a

a

Input Accept Transition

State

b

START

FSA over alphabet {a,b}

� We define a language to be a set
of strings over some alphabet Σ

� A set of states Q

� a designated start state q0

� a set of accepting final states
F ⊂Q

� edges: given current state qi and
input x ∈Σ, gives new state qj

� Important tip: every state should
have an edge for every element in
alphabet

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 10 / 1



Finite State Automaton

Examples

All binary strings

q2
0

q1 2

1,0,2 1

START

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 11 / 1



Finite State Automaton

Examples

All non-zero binary strings of even length

START

q1 q21

q3

0,10
1,0

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 11 / 1



Finite State Automaton

Examples

All non-zero binary strings of odd length

START

q1 q21

q3

1,00
1,0

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 11 / 1



Finite State Automaton

Examples

Suppose we wanted to accept the language of questioning cows

� every string must begin with a “m”

� every string must end with a question mark “?”

� there can only be “o” in between

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 11 / 1



Finite State Automaton

Examples

Inquisitive cow

START

q1 q2

q3

q5

q4

m

o

?

m,o,?

o,? m,?

mm,o,?

o

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 11 / 1



Finite State Automaton

What can you do with FSAs

� Equivalence to regular expressions

� Intersection: given two languages (L1, L2), give L1 ∩L2

� Difference: given two languages (L1,L2), give L1−L2

� Complementation: given a language L1, give Σ∗−L1

� Reversal: given a language L1, give {x : xR ∈ L1}
� Concatenation: Given two languages (L1,L2), give
{x : x = y + z,y ∈ L1,z ∈ L2}

� Closure: infinite repetition

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 12 / 1



Finite State Automaton

Uhh ... what about morphology?

� We’ve been talking about toy languages, but it works for real languages
too

� Why do you want to recognize languages?
� Spell checkers
� Language identification
� Speech synthesis

� Suppose you have an FSA for English stems (one for nouns, verbs,
adjectives, etc.)

� Now suppose that you have an FSA that can generate inflectional forms

� Combine them with union / concatenation!

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 13 / 1



Finite State Automaton

Nouns and their plurals

START

q1

q2 q3

q4 q5

q6
d

c

o
g

t
a

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 14 / 1



Finite State Automaton

Nouns and their plurals

START

q1

q2 q3

q4 q5

q6
d

c

o
g

t
a

q7s

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 14 / 1



Finite State Automaton

Non-deterministic FSA

� Allow empty input

� Allows multiple “universes” for strings to follow

� If any accepts, then it is part of the language

� Book uses ε, I’ll use a blank edge

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 15 / 1



Finite State Automaton

Non-deterministic composition

START

q1

q2 q3

q5 q6

q8
w

p

a
k

y
l

q4

q7

l

a

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 16 / 1



Finite State Automaton

Non-deterministic composition

START

q1

q2 q3

q5 q6

q8

w

p

a

k
y

l

q4

q7

l

a

q3

q8
i g

q4n

q7
e d

s

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 16 / 1



Finite State Automaton

Non-deterministic composition

q2

q3 q4

q6 q7

q9
w

p

a
k

y
l

q5

q8

l

a

q10

q13
i g

q11n

q12
e d

s

q14

q15 q16

q17 q18

q19
d

c

o
g

t
a

q20s

q1

START

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 16 / 1



Finite State Automaton

Non-deterministic composition

q2

q3 q4

q6 q7

q9
w

p

a
k

y
l

q5

q8

l

a

q10

q13
i g

q11n

q12
e d

s

q14

q15 q16

q17 q18

q19
d

c

o
g

t
a

q20s

q1

START Verb Base
Non-

deterministic 
Start

Noun Base

Verb Forms

Noun 
Plural

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 16 / 1



Finite State Transducer

FSA to FST

� FSA gives a binary output: is this a string or not
� What if we want to, for example, inflect words to reflect morphological

variation? (Or vice-versa, given an inflected form, get back the stem.)
� Useful for searching (“foxes” and “fox” are related)
� Useful for generation: I want to say “go”, but what’s the third-person past

tense?

� The answer is a finite state transducer

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 17 / 1



Finite State Transducer

FST definition

� In addition to everything that you had from an FSA, now each transition
also has an output (possibly empty)

� Think of this as “translating” an input string to an output

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 18 / 1



Finite State Transducer

Example

� Turning the inquisitive cow into emphatic sheep

� Emphatic sheep strings start with “b” have any number of “a” and end
with “!”

START

q1 q2

q3

q5

q4

m:b

o:a

?:!

m,o,?:

o,?: m,?:

m:m,o,?:

o:a

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 19 / 1



Finite State Transducer

Connection to modern NLP

� Subword models (LSTM over characters)

� PCFGs build on these ideas

� Often easy to build simple FST by hand

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 20 / 1


