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Roadmap

By the end of this class you should . ..

= Be able to write FSAs and FSTs

= Give examples of inflectional and derivational morphology
= Understand the challenges of morphology
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Typical Pipeline for nlp Tasks

Find the “units of meaning”

Do “shallow” analysis (pos tagging)

Do sentence-level analysis (parsing, srl)

Do document-level analysis (topic models, classification)

o 0N~

Extrinsic task (question answering)
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Typical Pipeline for nlp Tasks

Find the “units of meaning”

Do “shallow” analysis (pos tagging)

Do sentence-level analysis (parsing, srl)

Do document-level analysis (topic models, classification)

o~ 0N~

Extrinsic task (question answering)

This class is (mostly) about English ...

But if we were in Turkey, Finland, or Egypt, this part of the class would take
weeks or months. An important step that is really easy in English.
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Why morphology

Morpheme

Smallest unit of language that carries meaning

= “books”: two morphemes (“book” and “s”), one syllable
= “unladylike”: three morphemes, four syllables

= To do an analysis of language, we must do an analysis of the most
fundamental unit of language!

= This subfield of linguistics is called morphology
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Definitions

Derivational

You have a new word derived from an existing word that alters the
meaning

= Nominalization: computerization, appointee, killer

= Adjectivization: computational, clueless, embraceable

Inflectional

You have a variation of a word that expresses grammatical contrast

= tense, number, person
= word class doesn’t change
= “The pizza guy comes at noon” (from “come”)

Computational Ling Jordan Boyd-Graber | FSTs and Morphology | 5/1



Definitions

Root: common to a set of derived or inflected forms

Stem: root or roots of a word together with derivational affixes

Affix: bound morpheme that comes after or within a root or stem

Clitic: a morpheme that functions like a word but doesn’t appear on its
own (e.g., the 've in “I've”)
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Examples

Rechts+schutz+ver+sicher+ungs+gesell+schaft+en: Legal protection
insurance policy (German)

= uygar+lag+tir+tama+dik+larimiz+dan+mis+siniz+casina: Behaving as if
you are among those whom we could not cause to become civilized
(Turkish)

= “t0 amaste” “ellos aman” “yo amaria” (Spanish)

” o«

= ‘| eat”, “he eats”, “they’re eating”, “I ate” (English)

= “wo ai”, “ni ai”, “ni.men ai” (Chinese)
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Comparative Morphology

= Chinese is very easy
= English is fairly simple and regular

o Few irregular verbs, but they’re frequent
o Derivational morphology is very productive (e.g., “faxed”, “Skyped”,
“Brittaed”)
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A Simple Problem

We want to know whether a word is in a language or not
o We'll get to transforming string to morpheme in a bit

For English, it's possible to get by just with making a list

Much harder for other languages

Even for English, you miss out on derivations and inflections
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A Simple Problem

We want to know whether a word is in a language or not
o We'll get to transforming string to morpheme in a bit

For English, it's possible to get by just with making a list

Much harder for other languages

Even for English, you miss out on derivations and inflections

Turn to a tool called Finite State Automaton (FSA)
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Defining FSAs

= We define a language to be a set
of strings over some alphabet X

l Input Accept  Transition

FSA over alphabet {a, b}
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Defining FSAs

= We define a language to be a set
of strings over some alphabet X
= A set of states Q

l Input Accept  Transition

= a designated start state qp

FSA over alphabet {a, b}

Computational Linguisti rdan Boyd-Graber | FSTs and Morphology | 10/1



Defining FSAs

l nput__ Accept  Transition

FSA over alphabet {a, b}

We define a language to be a set
of strings over some alphabet X

A set of states Q
a designated start state qq

a set of accepting final states
FcaQ
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Defining FSAs

l nput__ Accept  Transition

FSA over alphabet {a, b}

We define a language to be a set
of strings over some alphabet X

A set of states Q
a designated start state qq

a set of accepting final states
FcaQ

edges: given current state g; and
input x € ¥, gives new state g;
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Defining FSAs

l Input_ . Accept  Transition

FSA over alphabet {a, b}

We define a language to be a set
of strings over some alphabet X

A set of states Q
a designated start state qq

a set of accepting final states
FcaQ

edges: given current state g; and
input x € ¥, gives new state g;
Important tip: every state should

have an edge for every element in
alphabet
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Examples

All binary strings

START

A
\o]

ql
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Examples

All non-zero binary strings of even length

START
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Examples

All non-zero binary strings of odd length

START
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Examples

Suppose we wanted to accept the language of questioning cows
= every string must begin with a “m”
= every string must end with a question mark “?”

= there can only be “0” in between
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Examples

Inquisitive cow

START
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What can you do with FSAs

= Equivalence to regular expressions

= [ntersection: given two languages (L, L), give Ly N Ly
= Difference: given two languages (L4, L), give Ly — L,
= Complementation: given a language L, give >*— L

= Reversal: given a language L, give {x: x" € L;}

= Concatenation: Given two languages (L4, L), give
{x:x=y+z,yeli,zely}
= Closure: infinite repetition
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Uhh ... what about morphology?

= We've been talking about toy languages, but it works for real languages
too

= Why do you want to recognize languages?

o Spell checkers
o Language identification
o Speech synthesis

= Suppose you have an FSA for English stems (one for nouns, verbs,
adjectives, etc.)

= Now suppose that you have an FSA that can generate inflectional forms

= Combine them with union / concatenation!
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Nouns and their plurals

START

LI D
X O
ROL.Chs
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Nouns and their plurals

START

L Lo Ce
G X, 3
L Chs
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Non-deterministic FSA

Allow empty input

Allows multiple “universes” for strings to follow

If any accepts, then it is part of the language

Book uses ¢, I'll use a blank edge
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Non-deterministic composition

START

P COLL COL DN
p'+a*y
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Non-deterministic composition

START

ECOEC L CD
X"
P
Ce =2 )e=(@)
y

© il oy
(L -©
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Non-deterministic composition

CECHECD) FCHZECD]
"iad k i g
q9 s

ql3
v

START

or ©
e OO M =
o ToN
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Non-deterministic composition

(D, D
| Verb Base I Verb-Forms!
QONOrO)
foOFOW
Noun Base

OO
a —»
A
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FSA to FST

= FSA gives a binary output: is this a string or not
= What if we want to, for example, inflect words to reflect morphological
variation? (Or vice-versa, given an inflected form, get back the stem.)

o Useful for searching (“foxes” and “fox” are related)
o Useful for generation: | want to say “go”, but what'’s the third-person past

tense?
= The answer is a finite state transducer
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FST definition

= |n addition to everything that you had from an FSA, now each transition
also has an output (possibly empty)

= Think of this as “translating” an input string to an output
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Example

= Turning the inquisitive cow into emphatic sheep
= Emphatic sheep strings start with “b” have any number of “a” and end
with “I”

START
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Connection to modern NLP

= Subword models (LSTM over characters)
= PCFGs build on these ideas
= Often easy to build simple FST by hand
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