FSTs and Morphology

Computational Linguistics: Jordan Boyd-Graber
University of Maryland

Computational Lingui: rdan Boyd-Graber | FSTs and Morphology | 1

Roadmap

By the end of this class you should . ..

= Be able to write FSAs and FSTs

= Give examples of inflectional and derivational morphology
= Understand the challenges of morphology

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 2/1

Typical Pipeline for nlp Tasks

Find the “units of meaning”

Do “shallow” analysis (pos tagging)

Do sentence-level analysis (parsing, srl)

Do document-level analysis (topic models, classification)

o 0N~

Extrinsic task (question answering)

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 3/1

Typical Pipeline for nlp Tasks

Find the “units of meaning”

Do “shallow” analysis (pos tagging)

Do sentence-level analysis (parsing, srl)

Do document-level analysis (topic models, classification)

o 0N~

Extrinsic task (question answering)

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 3/1

Typical Pipeline for nlp Tasks

Find the “units of meaning”

Do “shallow” analysis (pos tagging)

Do sentence-level analysis (parsing, srl)

Do document-level analysis (topic models, classification)

o~ 0N~

Extrinsic task (question answering)

This class is (mostly) about English ...

But if we were in Turkey, Finland, or Egypt, this part of the class would take
weeks or months. An important step that is really easy in English.

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 3/1

Why morphology

Morpheme

Smallest unit of language that carries meaning

= “books”: two morphemes (“book” and “s”), one syllable
= “unladylike”: three morphemes, four syllables

= To do an analysis of language, we must do an analysis of the most
fundamental unit of language!

= This subfield of linguistics is called morphology

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 4/1

Definitions

Derivational

You have a new word derived from an existing word that alters the
meaning

= Nominalization: computerization, appointee, killer

= Adjectivization: computational, clueless, embraceable

Inflectional

You have a variation of a word that expresses grammatical contrast

= tense, number, person
= word class doesn’t change
= “The pizza guy comes at noon” (from “come”)

Computational Ling Jordan Boyd-Graber | FSTs and Morphology | 5/1

Definitions

Root: common to a set of derived or inflected forms

Stem: root or roots of a word together with derivational affixes

Affix: bound morpheme that comes after or within a root or stem

Clitic: a morpheme that functions like a word but doesn’t appear on its
own (e.g., the 've in “I've”)

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 6/1

Examples

Rechts+schutz+ver+sicher+ungs+gesell+schaft+en: Legal protection
insurance policy (German)

= uygar+lag+tir+tama+dik+larimiz+dan+mis+siniz+casina: Behaving as if
you are among those whom we could not cause to become civilized
(Turkish)

= “t0 amaste” “ellos aman” “yo amaria” (Spanish)

” o«

= ‘| eat”, “he eats”, “they’re eating”, “I ate” (English)

= “wo ai”, “ni ai”, “ni.men ai” (Chinese)

Computational Linguisti rdan Boyd-Graber | FSTs and Morphology | 7/1

Comparative Morphology

= Chinese is very easy
= English is fairly simple and regular

o Few irregular verbs, but they’re frequent
o Derivational morphology is very productive (e.g., “faxed”, “Skyped”,
“Brittaed”)

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 8/1

A Simple Problem

We want to know whether a word is in a language or not
o We'll get to transforming string to morpheme in a bit

For English, it's possible to get by just with making a list

Much harder for other languages

Even for English, you miss out on derivations and inflections

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 9/1

A Simple Problem

We want to know whether a word is in a language or not
o We'll get to transforming string to morpheme in a bit

For English, it's possible to get by just with making a list

Much harder for other languages

Even for English, you miss out on derivations and inflections

Turn to a tool called Finite State Automaton (FSA)

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 9/1

Defining FSAs

= We define a language to be a set
of strings over some alphabet X

l Input Accept Transition

FSA over alphabet {a, b}

Computational Linguisti rdan Boyd-Graber | FSTs and Morphology | 10/1

Defining FSAs

= We define a language to be a set
of strings over some alphabet X

= A set of states Q

l nput__ Accept Transition

FSA over alphabet {a, b}

Computational Linguisti rdan Boyd-Graber | FSTs and Morphology | 10/1

Defining FSAs

= We define a language to be a set
of strings over some alphabet X
= A set of states Q

l Input Accept Transition

= a designated start state qp

FSA over alphabet {a, b}

Computational Linguisti rdan Boyd-Graber | FSTs and Morphology | 10/1

Defining FSAs

l nput__ Accept Transition

FSA over alphabet {a, b}

We define a language to be a set
of strings over some alphabet X

A set of states Q
a designated start state qq

a set of accepting final states
FcaQ

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 10/1

Defining FSAs

l nput__ Accept Transition

FSA over alphabet {a, b}

We define a language to be a set
of strings over some alphabet X

A set of states Q
a designated start state qq

a set of accepting final states
FcaQ

edges: given current state g; and
input x € ¥, gives new state g;

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 10/1

Defining FSAs

l Input_ . Accept Transition

FSA over alphabet {a, b}

We define a language to be a set
of strings over some alphabet X

A set of states Q
a designated start state qq

a set of accepting final states
FcaQ

edges: given current state g; and
input x € ¥, gives new state g;
Important tip: every state should

have an edge for every element in
alphabet

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 10/1

Examples

All binary strings

START

A
\o]

ql

Computational Linguistics: Jordan Boyd-Gr: s and Morphology | 11/1

Examples

All non-zero binary strings of even length

START

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 11/1

Examples

All non-zero binary strings of odd length

START

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 11/1

Examples

Suppose we wanted to accept the language of questioning cows
= every string must begin with a “m”
= every string must end with a question mark “?”

= there can only be “0” in between

Computational Linguisti rdan Boyd-Graber | FSTs and Morphology | 11/1

Examples

Inquisitive cow

START

Computational Linguistics: Jordan Boyd-Graber | s and Morphology | 11/1

What can you do with FSAs

= Equivalence to regular expressions

= [ntersection: given two languages (L, L), give Ly N Ly
= Difference: given two languages (L4, L), give Ly — L,
= Complementation: given a language L, give >*— L

= Reversal: given a language L, give {x: x" € L;}

= Concatenation: Given two languages (L4, L), give
{x:x=y+z,yeli,zely}
= Closure: infinite repetition

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 12/1

Uhh ... what about morphology?

= We've been talking about toy languages, but it works for real languages
too

= Why do you want to recognize languages?

o Spell checkers
o Language identification
o Speech synthesis

= Suppose you have an FSA for English stems (one for nouns, verbs,
adjectives, etc.)

= Now suppose that you have an FSA that can generate inflectional forms

= Combine them with union / concatenation!

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 13/1

Nouns and their plurals

START

LI D
X O
ROL.Chs

Computational Linguistics: Jordan Boyd-Gr: Ts and Morphology | 14/1

Nouns and their plurals

START

L Lo Ce
G X, 3
L Chs

Computational Li tics: Jordan Boyd-Graber | s and Morphology | 14/1

Non-deterministic FSA

Allow empty input

Allows multiple “universes” for strings to follow

If any accepts, then it is part of the language

Book uses ¢, I'll use a blank edge

Computational Linguisti rdan Boyd-Graber | FSTs and Morphology | 15/1

Non-deterministic composition

START

P COLL COL DN
p'+a*y

Computational Li FSTs and Morphology

Non-deterministic composition

START

ECOEC L CD
X"
P
Ce =2)e=(@)
y

© il oy
(L -©

Computational Linguistics: Jordan Boyd-Graber | s and Morphology | 16/1

Non-deterministic composition

CECHECD) FCHZECD]
"iad k i g
q9 s

ql3
v

START

or ©
e OO M =
o ToN

Computational Li Ts and Morphology

Non-deterministic composition

(D, D
| Verb Base I Verb-Forms!
QONOrO)
foOFOW
Noun Base

OO
a —»
A

Computational Linguistic dan Boyd-Graber | FSTs and Morphology | 16/1

FSA to FST

= FSA gives a binary output: is this a string or not
= What if we want to, for example, inflect words to reflect morphological
variation? (Or vice-versa, given an inflected form, get back the stem.)

o Useful for searching (“foxes” and “fox” are related)
o Useful for generation: | want to say “go”, but what'’s the third-person past

tense?
= The answer is a finite state transducer

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 17/1

FST definition

= |n addition to everything that you had from an FSA, now each transition
also has an output (possibly empty)

= Think of this as “translating” an input string to an output

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 18/1

Example

= Turning the inquisitive cow into emphatic sheep
= Emphatic sheep strings start with “b” have any number of “a” and end
with “I”

START

Computational Linguisti rdan Boyd-Graber | FSTs and Morphology | 19/1

Connection to modern NLP

= Subword models (LSTM over characters)
= PCFGs build on these ideas
= Often easy to build simple FST by hand

Computational Linguistics: Jordan Boyd-Graber | UMD FSTs and Morphology | 20/1

