

Part of Speech Tagging

Computational Linguistics: Jordan Boyd-Graber University of Maryland PERCEPTRON: SLIDES ADAPTED FROM LIANG HUANG

How do we set the feature weights?

- Goal is to minimize errors
- Want to reward features that lead to right answers
- Penalize features that lead to wrong answers
- Problem: predictions are correlated

Perceptron Algorithm

- Rather than just counting up how often we see events?
- We'll use this for intuition in 2D case

Perceptron Algorithm

1: $\vec{w}_1 \leftarrow \vec{0}$ 2: for $t \leftarrow 1 \dots T$ do 3: Receive x_t 4: $\hat{y}_t \leftarrow \operatorname{sgn}(\vec{w}_t \cdot \vec{x}_t)$ 5: Receive y_t 6: if $\hat{y}_t \neq y_t$ then 7: $\vec{w}_{t+1} \leftarrow \vec{w}_t + y_t \vec{x}_t$ 8: else 9: $\vec{w}_{t+1} \leftarrow w_t$ return w_{T+1}

Binary to Structure

Binary to Structure

Binary to Structure

Generic Perceptron

- perceptron is the simplest machine learning algorithm
- online-learning: one example at a time
- learning by doing
 - find the best output under the current weights
 - update weights at mistakes

2D Example

Initially, weight vector is zero:

$$\vec{w}_1 = \langle 0, 0 \rangle$$
 (1)

$$\vec{w}_{t+1} \leftarrow \vec{w}_t + y_t \vec{x}_t$$
 (5)
 $\vec{w}_2 \leftarrow$ (6)

$$\vec{w}_{t+1} \leftarrow \vec{w}_t + y_t \vec{x}_t$$
(5)

$$\vec{w}_2 \leftarrow \langle 0, 0 \rangle + \langle -2, 2 \rangle$$
(6)
(7)

$$\vec{w}_{t+1} \leftarrow \vec{w}_t + y_t \vec{x}_t \tag{5}$$

$$\vec{w}_2 \leftarrow \langle 0, 0 \rangle + \langle -2, 2 \rangle$$
 (6)

$$\vec{w}_2 = \langle -2, 2 \rangle \tag{7}$$

$$x_2 = \langle -2, -3 \rangle \tag{8}$$

$$\hat{y}_2 = +4 + -6 = -2$$
 (9)

$$y_2 = -1$$
 (10)

$$\vec{w}_{t+1} \leftarrow \vec{w}_t \tag{11}$$
$$\vec{w}_2 \leftarrow \tag{12}$$

$$\vec{w}_{t+1} \leftarrow \vec{w}_t \tag{11}$$
$$\vec{w}_2 \leftarrow \langle -2, 2 \rangle \tag{12}$$
$$\tag{13}$$

$$\vec{w}_{t+1} \leftarrow \vec{w}_t \tag{11}$$

$$\vec{w}_2 \leftarrow \langle -2, 2 \rangle \tag{12}$$

$$\vec{w}_2 = \langle -2, 2 \rangle \tag{13}$$

$$x_3 = \langle 2, -1 \rangle \tag{14}$$

$$\hat{y}_3 = -4 + -2 = -6$$
 (15)

$$y_3 = +1$$
 (16)

$$\vec{w}_{t+1} \leftarrow \vec{w}_t + y_t \vec{x}_t \tag{17}$$
$$\vec{w}_3 \leftarrow \tag{18}$$

$$\vec{w}_{t+1} \leftarrow \vec{w}_t + y_t \vec{x}_t \tag{17}$$

$$\vec{w}_3 \leftarrow \langle -2, 2 \rangle + \langle 2, -1 \rangle$$
 (18)

(19)

$$\vec{w}_{t+1} \leftarrow \vec{w}_t + y_t \vec{x}_t \tag{17}$$

$$\vec{w}_3 \leftarrow \langle -2, 2 \rangle + \langle 2, -1 \rangle$$
 (18)

$$\vec{w}_3 = \langle 0, 1 \rangle \tag{19}$$

$$x_4 = \langle 1, -4 \rangle$$
 (20)

$$\hat{y}_4 = -4$$
 (21)

$$y_4 = -1$$
 (22)

(23)

$$\vec{w}_4 \leftarrow \vec{w}_3 \tag{23}$$

(24)

$$\vec{w}_4 \leftarrow \vec{w}_3$$
 (23)
 $\vec{w}_4 = \langle 0, 1 \rangle$ (24)

$$y_5 = +1$$
 (27)

(28)

$$\vec{w}_5 \leftarrow \vec{w}_4$$
 (28)

(29)

$$\vec{w}_5 \leftarrow \vec{w}_4$$
 (28)
 $\vec{w}_5 = \langle 0, 1 \rangle$ (29)

$$y_6 = +1$$
 (32)

(33)

$$\vec{w}_6 \leftarrow \vec{w}_5 \tag{33}$$

(34)

$$\vec{w}_6 \leftarrow \vec{w}_5$$
 (33)
 $\vec{w}_6 = \langle 0, 1 \rangle$ (34)

Structured Perceptron

Perceptron Algorithm

Inputs:	Training set (x_i, y_i) for $i = 1 \dots n$
Initialization:	$\mathbf{W} = 0$
Define:	$F(x) = \operatorname{argmax}_{y \in \mathbf{GEN}(x)} \Phi(x, y) \cdot \mathbf{W}$
Algorithm:	For $t = 1 \dots T$, $i = 1 \dots n$ $z_i = F(x_i)$ If $(z_i \neq y_i)$ W \leftarrow W + $\Phi(x_i, y_i) - \Phi(x_i, z_i)$
Output:	Parameters W

POS Example

• weights --: (NN, NN) (NN, DT) (NN \rightarrow bit)