
Language Models

Computational Linguistics: Jordan Boyd-Graber
University of Maryland
INTRODUCTION

Slides adapted from Philip Koehn

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 1 / 17

Roadmap

After this class, you’ll be able to:

� Give examples of where we need language models

� Explain the independence assumptions of language models

� Estimate probability distributions using Laplace and Dirichlet smoothing

� Evaluate language models

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 2 / 17

What is a Language Model?

Language models

� Language models answer the question: How likely is a string of
English words good English?

� Autocomplete on phones and websearch

� Creating English-looking documents
� Very common in machine translation systems
� Help with reordering / style

plm(the house is small)> plm(small the is house)

� Help with word choice

plm(I am going home)> plm(I am going house)

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 3 / 17

What is a Language Model?

N-Gram Language Models

� Given: a string of English words W =w1, w2, w3, ..., wn

� Question: what is p (W)?
� Sparse data: Many good English sentences will not have been seen

before

→ Decomposing p (W) using the chain rule:

p (w1, w2, w3, ..., wn) =

p (w1) p (w2|w1) p (w3|w1, w2) . . . p (wn |w1, w2, ...wn−1)

(not much gained yet, p (wn |w1, w2, ...wn−1) is equally sparse)

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 4 / 17

What is a Language Model?

Markov Chain

� Markov independence assumption:
� only previous history matters
� limited memory: only last k words are included in history

(older words less relevant)
→ k th order Markov model

� For instance 2-gram language model:

p (w1, w2, w3, ..., wn)' p (w1) p (w2|w1) p (w3|w2)...p (wn |wn−1)

� What is conditioned on, here wi−1 is called the history

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 5 / 17

Evaluating Language Models

How good is the LM?

� A good model assigns a text of real English W a high probability

� This can be also measured with perplexity

perplexity(W) = P (w1, . . . wN)
− 1

N

= N

√

√

√

√

N
∏

i

1

P (wi |w1 . . . wi−1)

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 6 / 17

Evaluating Language Models

Comparison 1–4-Gram

word unigram bigram trigram 4-gram

i 6.684 3.197 3.197 3.197
would 8.342 2.884 2.791 2.791

like 9.129 2.026 1.031 1.290
to 5.081 0.402 0.144 0.113

commend 15.487 12.335 8.794 8.633
the 3.885 1.402 1.084 0.880

reporter 10.840 7.319 2.763 2.350
. 4.896 3.020 1.785 1.510

</s> 4.828 0.005 0.000 0.000

average
perplexity 265.136 16.817 6.206 4.758

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 7 / 17

Estimating Probability Distributions

How do we estimate a probability?

� Suppose we want to estimate P (wn = “ho me ′′|h =go).

home home big with to
big with to and money
and home big and home

money home and big to
� Maximum likelihood (ML) estimate of the probability is:

θ̂i =
ni
∑

k nk
(1)

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 8 / 17

Estimating Probability Distributions

How do we estimate a probability?

� Suppose we want to estimate P (wn = “ho me ′′|h =go).
home home big with to

big with to and money
and home big and home

money home and big to

� Maximum likelihood (ML) estimate of the probability is:

θ̂i =
ni
∑

k nk
(1)

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 8 / 17

Estimating Probability Distributions

How do we estimate a probability?

� Suppose we want to estimate P (wn = “ho me ′′|h =go).
home home big with to

big with to and money
and home big and home

money home and big to
� Maximum likelihood (ML) estimate of the probability is:

θ̂i =
ni
∑

k nk
(1)

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 8 / 17

Estimating Probability Distributions

Example: 3-Gram

� Counts for trigrams and estimated word probabilities

the red (total: 225)

word c. prob.

cross 123 0.547
tape 31 0.138
army 9 0.040
card 7 0.031

, 5 0.022

� 225 trigrams in the Europarl corpus start with the red
� 123 of them end with cross
→ maximum likelihood probability is 123

225 = 0.547.

� Is this reasonable?

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 9 / 17

Estimating Probability Distributions

Example: 3-Gram

� Counts for trigrams and estimated word probabilities

the red (total: 225)

word c. prob.

cross 123 0.547
tape 31 0.138
army 9 0.040
card 7 0.031

, 5 0.022

� 225 trigrams in the Europarl corpus start with the red
� 123 of them end with cross
→ maximum likelihood probability is 123

225 = 0.547.

� Is this reasonable?

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 9 / 17

Estimating Probability Distributions

The problem with maximum likelihood estimates: Zeros

� If there were no occurrences of “bageling” in a history go, we’d get a
zero estimate:

P̂ (“bageling”| go) =
Tgo, “bageling”
∑

w ′∈V Tgo,w ′
= 0

� →We will get P (go|d) = 0 for any sentence that contains go bageling!

� Zero probabilities cannot be conditioned away.

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 10 / 17

Estimating Probability Distributions

How do we estimate a probability?

� In computational linguistics, we often have a prior notion of what our
probability distributions are going to look like (for example, non-zero,
sparse, uniform, etc.).

� This estimate of a probability distribution is called the maximum a
posteriori (MAP) estimate:

θMAP = argmaxθ f (x |θ)g (θ) (2)

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 11 / 17

Estimating Probability Distributions

Add-One Smoothing

� Equivalent to assuming a uniform prior over all possible distributions
over the next word (you’ll learn why in CL2)

� But there are many more unseen n-grams than seen n-grams
� Example: Europarl 2-bigrams:
� 86, 700 distinct words
� 86, 7002 = 7, 516, 890, 000 possible bigrams
� but only about 30, 000, 000 words (and bigrams) in corpus

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 12 / 17

Estimating Probability Distributions

How do we estimate a probability?

� Assuming a sparse Dirichlet prior, α< 1 to each count

θi =
ni +αi
∑

k nk +αk
(3)

� αi is called a smoothing factor, a pseudocount, etc.

� When αi = 1 for all i , it’s called “Laplace smoothing”

� What is a good value for α?

� Could be optimized on held-out set to find the “best” language model

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 13 / 17

Estimating Probability Distributions

How do we estimate a probability?

� Assuming a sparse Dirichlet prior, α< 1 to each count

θi =
ni +αi
∑

k nk +αk
(3)

� αi is called a smoothing factor, a pseudocount, etc.

� When αi = 1 for all i , it’s called “Laplace smoothing”

� What is a good value for α?

� Could be optimized on held-out set to find the “best” language model

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 13 / 17

Estimating Probability Distributions

How do we estimate a probability?

� Assuming a sparse Dirichlet prior, α< 1 to each count

θi =
ni +αi
∑

k nk +αk
(3)

� αi is called a smoothing factor, a pseudocount, etc.

� When αi = 1 for all i , it’s called “Laplace smoothing”

� What is a good value for α?

� Could be optimized on held-out set to find the “best” language model

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 13 / 17

Estimating Probability Distributions

Example: 2-Grams in Europarl

Count Adjusted count Test count
c (c +1) (c +α) tc

0 0.00378 0.00016 0.00016
1 0.00755 0.95725 0.46235
2 0.01133 1.91433 1.39946
3 0.01511 2.87141 2.34307
4 0.01888 3.82850 3.35202
5 0.02266 4.78558 4.35234
6 0.02644 5.74266 5.33762
8 0.03399 7.65683 7.15074
10 0.04155 9.57100 9.11927
20 0.07931 19.14183 18.95948

� Add-α smoothing with α= 0.00017

� tc are average counts of n-grams in test set that occurred c times in
corpus

Can we do better?

In higher-order models, we can learn from similar contexts!

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 14 / 17

Estimating Probability Distributions

Example: 2-Grams in Europarl

Count Adjusted count Test count
c (c +1) (c +α) tc

0 0.00378 0.00016 0.00016
1 0.00755 0.95725 0.46235
2 0.01133 1.91433 1.39946
3 0.01511 2.87141 2.34307
4 0.01888 3.82850 3.35202
5 0.02266 4.78558 4.35234
6 0.02644 5.74266 5.33762
8 0.03399 7.65683 7.15074
10 0.04155 9.57100 9.11927
20 0.07931 19.14183 18.95948

� Add-α smoothing with α= 0.00017

� tc are average counts of n-grams in test set that occurred c times in
corpus

Can we do better?

In higher-order models, we can learn from similar contexts!

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 14 / 17

Estimating Probability Distributions

What’s a word?

� There are an infinite number of words
� Possible to develop generative story of how new words are created
� Bayesian non-parametrics

� Defining a vocabulary (the event space)
� But how do you handle words outside of your vocabulary?
� Ignore? You could win just by ignoring everything
� Standard: replace with <UNK> token

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 15 / 17

Estimating Probability Distributions

What’s a word?

� There are an infinite number of words
� Possible to develop generative story of how new words are created
� Bayesian non-parametrics

� Defining a vocabulary (the event space)
� But how do you handle words outside of your vocabulary?

� Ignore? You could win just by ignoring everything
� Standard: replace with <UNK> token

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 15 / 17

Estimating Probability Distributions

What’s a word?

� There are an infinite number of words
� Possible to develop generative story of how new words are created
� Bayesian non-parametrics

� Defining a vocabulary (the event space)
� But how do you handle words outside of your vocabulary?
� Ignore? You could win just by ignoring everything
� Standard: replace with <UNK> token

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 15 / 17

Estimating Probability Distributions

Reducing Vocabulary Size

� For instance: each number is treated as a separate token
� Replace them with a number token num
� but: we want our language model to prefer

plm(I pay 950.00 in May 2007)> plm(I pay 2007 in May 950.00)

� not possible with number token

plm(I pay num in May num) = plm(I pay num in May num)

� Replace each digit (with unique symbol, e.g., @ or 5), retain some
distinctions

plm(I pay 555.55 in May 5555)> plm(I pay 5555 in May 555.55)

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 16 / 17

Advanced Zero Avoidance

Back-Off

� In given corpus, we may never observe
� Scottish beer drinkers
� Scottish beer eaters

� Both have count 0

→ our smoothing methods will assign them same probability
� Better: backoff to bigrams:
� beer drinkers
� beer eaters

� How do we deal with this?

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 17 / 17

Advanced Zero Avoidance

Back-Off

� In given corpus, we may never observe
� Scottish beer drinkers
� Scottish beer eaters

� Both have count 0

→ our smoothing methods will assign them same probability
� Better: backoff to bigrams:
� beer drinkers
� beer eaters

� How do we deal with this?

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 17 / 17

	What is a Language Model?
	Evaluating Language Models
	Estimating Probability Distributions
	Advanced Zero Avoidance

