Language Models

Computational Linguistics: Jordan Boyd-Graber
University of Maryland

Slides adapted from Philip Koehn

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 1/17

Roadmap

After this class, you'll be able to:

= Give examples of where we need language models

= Explain the independence assumptions of language models

= Estimate probability distributions using Laplace and Dirichlet smoothing
= Evaluate language models

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 2/17

Language models

Language models answer the question: How likely is a string of
English words good English?

Autocomplete on phones and websearch

Creating English-looking documents
Very common in machine translation systems
o Help with reordering / style

Pim(the house is small) > pjy(small the is house)
o Help with word choice

Pm(l am going home) > py,(I am going house)

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 3/17

N-Gram Language Models

= Given: a string of English words W = w;y, ws, ws, ..., w,
= Question: whatis p(W)?

= Sparse data: Many good English sentences will not have been seen
before

— Decomposing p(W) using the chain rule:

p(wy, Wy, ws, ..., wy) =

p(wy) p(ws|wy) p(ws|wy, wy). .. p(w,|wy, ws, ...wy,_)

(not much gained yet, p(w,|w;, w,,...w,_4) is equally sparse)

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 4/17

Markov Chain

= Markov independence assumption:

o only previous history matters
o limited memory: only last k words are included in history
(older words less relevant)
— kth order Markov model

= For instance 2-gram language model:
p(wy, Wy, w3, ..., wy) =~ p(wy) p(ws|wy) p(ws|w,)...p(wy, | wy,_;)

= What is conditioned on, here w;_; is called the history

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 5/17

How good is the LM?

= A good model assigns a text of real English W a high probability
= This can be also measured with perplexity

perplexity(W) = P(wy,... wN)_%

N

1
_ N
- Up(wi|w1---wi—l)

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 6/17

Comparison 1—4-Gram

word unigram | bigram | trigram | 4-gram

i 6.684 | 3.197 | 3.197 3.197
would 8.342 | 2884 | 2.791 2.791
like 9.129 | 2.026 1.031 1.290

to 5.081 0.402 0.144 0.113
commend 15.487 | 12.335 | 8.794 8.633
the 3.885 1.402 1.084 0.880

reporter 10.840 7.319 2.763 2.350
. 4.896 | 3.020 1.785 1.510
</s> 4.828 | 0.005 0.000 0.000
average
perplexity | 265.136 | 16.817 6.206 4.758

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 7/17

How do we estimate a probability?

= Suppose we want to estimate P(w, = “home”|h = go).

Computational Linguistics: Jordan Boyd-Graber | Language Models |

How do we estimate a probability?

= Suppose we want to estimate P(w,, = “home”|h = go)
home home big with to

big with to and money
and home big and

money home and

home
big to

Computational Linguistics: Jordan Boyd-Graber | UMD

Language Models | 8/17

How do we estimate a probability?

= Suppose we want to estimate P(w, = “home”|h = go).
home home big with to

big with to and money
and home big and home
money home and big to

= Maximum likelihood (ML) estimate of the probability is:

A n;

_ank

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 8/17

Example: 3-Gram

= Counts for trigrams and estimated word probabilities
the red (total: 225)
word | c. | prob.

cross | 123 | 0.547
tape 31 | 0.138

army 9 0.040
card 7 0.031

) 5 | 0.022

o 225 trigrams in the Europarl corpus start with the red
o 123 of them end with cross
— maximum likelihood probability is % =0.547.

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 9/17

Example: 3-Gram

= Counts for trigrams and estimated word probabilities
the red (total: 225)
word | c. | prob.

cross | 123 | 0.547
tape 31 | 0.138

army 9 0.040
card 7 0.031

) 5 | 0.022

o 225 trigrams in the Europarl corpus start with the red
o 123 of them end with cross
— maximum likelihood probability is % =0.547.

= |s this reasonable?

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 9/17

The problem with maximum likelihood estimates: Zeros

= |f there were no occurrences of “bageling” in a history go, we'd get a
zero estimate:

N T “* |' ”
P(“bageling”’| go)= 90, "bageling” =0
Dwev Tgo,w

= — We will get P(go|d)= 0 for any sentence that contains go bageling!

= Zero probabilities cannot be conditioned away.

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 10/17

How do we estimate a probability?

= |n computational linguistics, we often have a prior notion of what our
probability distributions are going to look like (for example, non-zero,
sparse, uniform, etc.).

= This estimate of a probability distribution is called the maximum a
posteriori (MAP) estimate:

Omap =argmax, f(x[0)g(6) (2)

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 11/17

Add-One Smoothing

= Equivalent to assuming a uniform prior over all possible distributions
over the next word (you’ll learn why in CL2)

= But there are many more unseen n-grams than seen n-grams

= Example: Europarl 2-bigrams:

o 86,700 distinct words
o 86,7002 =7,516,890,000 possible bigrams
o but only about 30,000,000 words (and bigrams) in corpus

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 12/17

How do we estimate a probability?

= Assuming a sparse Dirichlet prior, @ <1 to each count

n;+a;
9= i
ank+ak

= @; is called a smoothing factor, a pseudocount, etc.

Computational Linguisti rdan Boyd-Graber | Language Models |

How do we estimate a probability?

= Assuming a sparse Dirichlet prior, @ <1 to each count
n;+a;
;= v
Zk ng+ag

= @; is called a smoothing factor, a pseudocount, etc.
= When ¢; =1 for all i, it’s called “Laplace smoothing”

Computational Ling Jordan Boyd-Graber | Language Models | 13/17

How do we estimate a probability?

Assuming a sparse Dirichlet prior, a <1 to each count

n;+a;
9= i
ank+ak

a; is called a smoothing factor, a pseudocount, etc.

When a; =1 for all i, it's called “Laplace smoothing”

What is a good value for a?

Could be optimized on held-out set to find the “best” language model

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 13/17

Example: 2-Grams in Europarl

Count Adjusted count Test count

c (c+1) (c+a) t.

0 0.00378 | 0.00016 0.00016
1 0.00755 | 0.95725 0.46235
2 0.01133 | 1.91433 1.39946
3 0.01511 | 2.87141 2.34307
4 0.01888 | 3.82850 3.35202
5 0.02266 | 4.78558 4.35234
6 0.02644 | 5.74266 5.33762
8 0.03399 | 7.65683 7.15074
10 0.04155 | 9.57100 9.11927
20 0.07931 | 19.14183 | 18.95948

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 14/17

Example: 2-Grams in Europarl

Count Adjusted count Test count
c (c+1) (c+a) t.
0.00378 | 0.00016 0.00016
0.00755 | 0.95725 0.46235
0.01133 | 1.91433 1.39946
0.01511 | 2.87141 2.34307
4 0.01888 | 3.82850 3.35202

Can we do better?

W|IN| =[O

In higher-order models, we can learn from similar contexts!

o V.VooIJI 1 .OVV0OV 119U+

10 0.04155 | 9.57100 9.11927
20 0.07931 | 19.14183 | 18.95948

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 14/17

What’s a word?

= There are an infinite number of words

o Possible to develop generative story of how new words are created
o Bayesian non-parametrics

Computational Linguistics: Jordan Boyd-Graber | Language Models | 15/

What’s a word?

= There are an infinite number of words

o Possible to develop generative story of how new words are created
o Bayesian non-parametrics

= Defining a vocabulary (the event space)
= But how do you handle words outside of your vocabulary?

Computational Linguisti rdan Boyd-Graber | Language Models | 15/17

What’s a word?

= There are an infinite number of words
o Possible to develop generative story of how new words are created
o Bayesian non-parametrics

= Defining a vocabulary (the event space)

= But how do you handle words outside of your vocabulary?

o Ignore? You could win just by ignoring everything
o Standard: replace with <UNK> token

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 15/17

Reducing Vocabulary Size

= For instance: each number is treated as a separate token
= Replace them with a number token num
o but: we want our language model to prefer

Pim(l pay 950.00 in May 2007) > pi,(l pay 2007 in May 950.00)

o not possible with number token

Pim(l pay num in May num) = p,,(1 pay num in May num)

= Replace each digit (with unique symbol, e.g., @ or 5), retain some
distinctions

Pim(l pay 555.55 in May 5555) > p,(l pay 5555 in May 555.55)

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 16/17

Back-Off

= |n given corpus, we may never observe

o Scottish beer drinkers
o Scottish beer eaters

= Both have count O

— our smoothing methods will assign them same probability

= Better: backoff to bigrams:

o beer drinkers
o beer eaters

Language Models | 17/17

Computational Linguisti rdan Boyd-Graber |

Back-Off

In given corpus, we may never observe

o Scottish beer drinkers
o Scottish beer eaters

Both have count 0

— our smoothing methods will assign them same probability
Better: backoff to bigrams:

o beer drinkers
o beer eaters

How do we deal with this?

Computational Linguistics: Jordan Boyd-Graber | UMD Language Models | 17/17

	What is a Language Model?
	Evaluating Language Models
	Estimating Probability Distributions
	Advanced Zero Avoidance

