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What’s wrong with PMI?

� PMI-based methods prefer rare words

� E.g., closest to “king”

� Jeongjo (Koryo), Adulyadej (Chakri), Coretta (MLK)

� Hard to scale

� Doesn’t work as well?
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Hyperparameters Matter

� Preprocessing (word2vec)
� Dynamic Context Windows
� Subsampling
� Deleting Rare Words

� Postprocessing (GloVe)
� Adding Context Vectors

� Association Metric (SGNS)
� Shifted PMI
� Context Distribution Smoothing
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Dynamic Context Windows
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Adding Context Vectors

� Skip-Gram Negative Sampling creates word vectors w

� . . . and context vectors c

� Pennington et al. (2014) use w + c to represent word

� Levy et al. (2015) find that data size and preprocessing account for
most (if not all) of difference
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Smoothing

� Introduced in word2vec for negative sampling (α= 0.75)

P̂α(c) =
#(c)α
∑

c′#(c)α
(1)

� For PMI, helps remove bias toward rare words

� And makes it about as good as word2vec
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Rant on Evaluation

� Analogy and Similarity aren’t that useful

� Find a real-world task and optimize for that

� Innovation is still possible

� Just getting better word vectors is a fruitless cottage industry

� Always tune baseline hyperparameters (and recognize what the
hyperparameters are)
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Other Languages are Harder
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Takeaway

� Word representations very important

� Future: continuous representations in more complicated models

� Future: document representations
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