
Distributional Semantics

Computational Linguistics: Jordan Boyd-Graber
University of Maryland
SLIDES ADAPTED FROM YOAV GOLDBERG AND OMER LEVY

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 1 / 19

From Distributional to Distributed Semantics

The new kid on the block

� Deep learning / neural networks
� “Distributed” word representations
� Feed text into neural-net. Get back “word embeddings”.
� Each word is represented as a low-dimensional vector.
� Vectors capture “semantics”

� word2vec (Mikolov et al)

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 2 / 19

From Distributional to Distributed Semantics

This part of the talk

� word2vec as a black box

� a peek inside the black box

� relation between word-embeddings and the distributional representation

� tailoring word embeddings to your needs using word2vec

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 3 / 19

word2vec

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 4 / 19

word2vec

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 5 / 19

word2vec

� dog
� cat, dogs, dachshund, rabbit, puppy, poodle, rottweiler, mixed-breed,

doberman, pig
� sheep
� cattle, goats, cows, chickens, sheeps, hogs, donkeys, herds, shorthorn,

livestock
� november
� october, december, april, june, february, july, september, january, august,

march
� jerusalem
� tiberias, jaffa, haifa, israel, palestine, nablus, damascus katamon, ramla,

safed
� teva
� pfizer, schering-plough, novartis, astrazeneca, glaxosmithkline,

sanofi-aventis, mylan, sanofi, genzyme, pharmacia

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 6 / 19

Working with Dense Vectors

Word Similarity

� Similarity is calculated using cosine similarity :

sim(~dog, ~cat) =
~dog · ~cat

|| ~dog|| || ~cat ||

� For normalized vectors (||x ||= 1), this is equivalent to a dot product:

sim(~dog, ~cat) = ~dog · ~cat

� Normalize the vectors when loading them.

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 7 / 19

Working with Dense Vectors

Finding the most similar words to ~dog

� Compute the similarity from word ~v to all other words.

� This is a single matrix-vector product: W · ~v>

� Result is a |V | sized vector of similarities.

� Take the indices of the k -highest values.

� FAST! for 180k words, d=300: ∼30ms

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 8 / 19

Working with Dense Vectors

Finding the most similar words to ~dog

� Compute the similarity from word ~v to all other words.

� This is a single matrix-vector product: W · ~v>

� Result is a |V | sized vector of similarities.

� Take the indices of the k -highest values.

� FAST! for 180k words, d=300: ∼30ms

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 8 / 19

Working with Dense Vectors

Finding the most similar words to ~dog

� Compute the similarity from word ~v to all other words.

� This is a single matrix-vector product: W · ~v>

� Result is a |V | sized vector of similarities.

� Take the indices of the k -highest values.

� FAST! for 180k words, d=300: ∼30ms

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 8 / 19

Working with Dense Vectors

Finding the most similar words to ~dog

� Compute the similarity from word ~v to all other words.

� This is a single matrix-vector product: W · ~v>

� Result is a |V | sized vector of similarities.

� Take the indices of the k -highest values.

� FAST! for 180k words, d=300: ∼30ms
Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 8 / 19

Working with Dense Vectors

Most Similar Words, in python+numpy code

W,words = load_and_norm_vectors("vecs.txt")
W and words are numpy arrays.
w2i = {w:i for i,w in enumerate(words)}

dog = W[w2i[’dog’]] # get the dog vector

sims = W.dot(dog) # compute similarities

most_similar_ids = sims.argsort()[-1:-10:-1]
sim_words = words[most_similar_ids]

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 9 / 19

Working with Dense Vectors

Similarity to a group of words

� “Find me words most similar to cat, dog and cow”.

� Calculate the pairwise similarities and sum them:

W · ~cat +W · ~dog +W · ~cow

� Now find the indices of the highest values as before.

� Matrix-vector products are wasteful. Better option:

W · (~cat + ~dog + ~cow)

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 10 / 19

Working with Dense Vectors

Similarity to a group of words

� “Find me words most similar to cat, dog and cow”.

� Calculate the pairwise similarities and sum them:

W · ~cat +W · ~dog +W · ~cow

� Now find the indices of the highest values as before.

� Matrix-vector products are wasteful. Better option:

W · (~cat + ~dog + ~cow)

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 10 / 19

Working with dense word vectors can be very efficient.

But where do these vectors come from?

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 11 / 19

Working with dense word vectors can be very efficient.

But where do these vectors come from?

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 11 / 19

How does word2vec work?

word2vec implements several different algorithms:

Two training methods

� Negative Sampling

� Hierarchical Softmax

Two context representations

� Continuous Bag of Words (CBOW)

� Skip-grams

We’ll focus on skip-grams with negative sampling

intuitions apply for other models as well

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 12 / 19

How does word2vec work?

word2vec implements several different algorithms:

Two training methods

� Negative Sampling

� Hierarchical Softmax

Two context representations

� Continuous Bag of Words (CBOW)

� Skip-grams

We’ll focus on skip-grams with negative sampling

intuitions apply for other models as well

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 12 / 19

How does word2vec work?

� Represent each word as a d dimensional vector.

� Represent each context as a d dimensional vector.

� Initalize all vectors to random weights.

� Arrange vectors in two matrices, W and C.

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 13 / 19

How does word2vec work?

While more text:
� Extract a word window:
A springer is [a cow or heifer close to calving] .

c1 c2 c3 w c4 c5 c6

� w is the focus word vector (row in W).
� ci are the context word vectors (rows in C).

� Try setting the vector values such that:

σ(w · c1)+σ(w · c2)+σ(w · c3)+σ(w · c4)+σ(w · c5)+σ(w · c6)

is high

� Create a corrupt example by choosing a random word w ′
[a cow or comet close to calving]

c1 c2 c3 w ′ c4 c5 c6

� Try setting the vector values such that:

σ(w ′ · c1)+σ(w
′ · c2)+σ(w

′ · c3)+σ(w
′ · c4)+σ(w

′ · c5)+σ(w
′ · c6)

is low

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 14 / 19

How does word2vec work?

While more text:
� Extract a word window:
A springer is [a cow or heifer close to calving] .

c1 c2 c3 w c4 c5 c6

� Try setting the vector values such that:

σ(w · c1)+σ(w · c2)+σ(w · c3)+σ(w · c4)+σ(w · c5)+σ(w · c6)

is high

� Create a corrupt example by choosing a random word w ′
[a cow or comet close to calving]

c1 c2 c3 w ′ c4 c5 c6

� Try setting the vector values such that:

σ(w ′ · c1)+σ(w
′ · c2)+σ(w

′ · c3)+σ(w
′ · c4)+σ(w

′ · c5)+σ(w
′ · c6)

is low

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 14 / 19

How does word2vec work?

While more text:
� Extract a word window:
A springer is [a cow or heifer close to calving] .

c1 c2 c3 w c4 c5 c6

� Try setting the vector values such that:

σ(w · c1)+σ(w · c2)+σ(w · c3)+σ(w · c4)+σ(w · c5)+σ(w · c6)

is high

� Create a corrupt example by choosing a random word w ′
[a cow or comet close to calving]

c1 c2 c3 w ′ c4 c5 c6

� Try setting the vector values such that:

σ(w ′ · c1)+σ(w
′ · c2)+σ(w

′ · c3)+σ(w
′ · c4)+σ(w

′ · c5)+σ(w
′ · c6)

is low

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 14 / 19

How does word2vec work?

The training procedure results in:

� w · c for good word-context pairs is high

� w · c for bad word-context pairs is low

� w · c for ok-ish word-context pairs is neither high nor low

As a result:

� Words that share many contexts get close to each other.

� Contexts that share many words get close to each other.

At the end, word2vec throws away C and returns W .

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 15 / 19

Reinterpretation

Imagine we didn’t throw away C. Consider the product WC>

The result is a matrix M in which:
� Each row corresponds to a word.
� Each column corresponds to a context.
� Each cell: w · c, association between word and context.

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 16 / 19

Reinterpretation

Imagine we didn’t throw away C. Consider the product WC>

The result is a matrix M in which:
� Each row corresponds to a word.
� Each column corresponds to a context.
� Each cell: w · c, association between word and context.

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 16 / 19

Reinterpretation

Does this remind you of something?

Very similar to SVD over distributional representation:

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 17 / 19

Reinterpretation

Does this remind you of something?

Very similar to SVD over distributional representation:

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 17 / 19

Relation between SVD and word2vec

SVD

� Begin with a word-context matrix.

� Approximate it with a product of low rank (thin) matrices.

� Use thin matrix as word representation.

word2vec (skip-grams, negative sampling)

� Learn thin word and context matrices.
� These matrices can be thought of as approximating an implicit

word-context matrix.
� Levy and Goldberg (NIPS 2014) show that this implicit matrix is related to

the well-known PPMI matrix.

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 18 / 19

Relation between SVD and word2vec

word2vec is a dimensionality reduction technique over an (implicit)
word-context matrix.

Just like SVD.

With few tricks (Levy, Goldberg and Dagan, TACL 2015) we can get SVD to
perform just as well as word2vec.

However, word2vec. . .

� . . . works without building / storing the actual matrix in memory.

� . . . is very fast to train, can use multiple threads.

� . . . can easily scale to huge data and very large word and context
vocabularies.

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 19 / 19

Relation between SVD and word2vec

word2vec is a dimensionality reduction technique over an (implicit)
word-context matrix.

Just like SVD.

With few tricks (Levy, Goldberg and Dagan, TACL 2015) we can get SVD to
perform just as well as word2vec.

However, word2vec. . .

� . . . works without building / storing the actual matrix in memory.

� . . . is very fast to train, can use multiple threads.

� . . . can easily scale to huge data and very large word and context
vocabularies.

Computational Linguistics: Jordan Boyd-Graber | UMD Distributional Semantics | 19 / 19

