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Word Representation

= Before, we saw how valuable hidden layers were for representation
(much more language today)

= How can we use it for words?
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How similar is “pasta” to “pizza”

Computers often use one-hot representations

Or fragile knowledge bases
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Word Representation

= Before, we saw how valuable hidden layers were for representation
(much more language today)

= How can we use it for words?

= How similar is “pasta” to “pizza”

= Computers often use one-hot representations

= Or fragile knowledge bases

= Distributional Hypothesis (Harris, 1954; Firth, 1957)
= Know the word by the company it keeps
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Intuition (from Boroni)

Marco saw a furry little wampimuk hiding in the tree
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Representation
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Usefulness

= Multimodal
= Multilingual

= Useful downstream feature
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