
Example

� Feed-forward language model

� Full example

Code

https://github.com/neubig/nn4nlp-code/blob/
master/02-lm-pytorch/nn-lm-batch.py
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Data and Model (should be familiar)

Data
x1 x2 y

1.00 1.00 0.00
1.00 0.00 1.00
0.00 0.00 0.00
0.00 1.00 1.00

First Layer

w (1) =

�

1.00 1.00
1.00 1.00

�

(1)

b (1) =
�

0.00 1.00
�

(2)

Second Layer

w (2) =
�

0.00 0.00
�

(3)

b (2) = 0.00 (4)

Using ReLU as non-linearity
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ReLu Model

class ReLuModel(nn.Module):
def __init__(self, input_size=2, hidden_dim=2, num_classes=1):

super(ReLuModel, self).__init__()
self.first_layer = nn.Linear(input_size, hidden_dim)
self.second_layer = nn.Linear(hidden_dim, num_classes)

def forward(self, x):
first_layer = self.first_layer(x)
first_activation = first_layer.clamp(min=0)
second_layer = self.second_layer(first_activation)
out = second_layer.clamp(min=0)
return out
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Learning

loss_func = nn.MSELoss()
optimizer = torch.optim.SGD(relu.parameters(), lr=0.1)
for ii in range(kITER):

for x, y in zip(data_x, data_y):
optimizer.zero_grad()
loss = loss_func(relu.forward(x), y)
loss.backward()
optimizer.step()
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Inspecting Model

def model_string(self):
first_layer = "%0.2f %0.2f\n%0.2f %0.2f\n" % \

(self.first_layer.weight.data[0][0],
self.first_layer.weight.data[0][1],
self.first_layer.weight.data[1][0],
self.first_layer.weight.data[0][1])

first_bias = "%0.2f %0.2f\n" % \
(self.first_layer.bias.data[0],
self.first_layer.bias.data[1])

second_layer = "%0.2f %0.2f\n" % \
(self.second_layer.weight.data[0][0],
self.second_layer.weight.data[0][1])

second_bias = "%0.2f" % self.second_layer.bias.data[0]

return "FL: " + first_layer + "FB: " + first_bias + "SL: " + second_layer + "SB: " + second_bias
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Inspecting Model

FL: 1.00 1.00
1.00 1.00
FB: 0.00 1.00
SL: 0.00 0.00
SB: 0.00
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Running Computation Forward

>>> x = torch.Tensor(1, 5)
>>> x
tensor([[ 0.0000, -0.0000, 0.0000, -0.0000, 0.0000]])
>>> x = x*0 + 1
>>> x
tensor([[1., 1., 1., 1., 1.]])
>>> model.forward(x)
tensor([[-0.2263, 0.5485]], grad_fn=<ThAddmmBackward>)
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Models and Parameters

� Parameters are the things that we optimize over (vectors, matrices).

� Model is a collection of parameters.

� Parameters out-live the computation graph.
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Modules allow computation graph

� Each module must implement forward function

� If forward function just uses built-in modules, autograd works
� If not, you’ll need to implement backward function (i.e., backprop)

� input: as many Tensors as outputs of module (gradient w.r.t. that output)
� output: as many Tensors as inputs of module (gradient w.r.t. its

corresponding input)
� If inputs do not need gradient (static) you can return None
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Trainers and Backprop

� Initialize a Optimizer with a given model’s parameter

� Get output for an example / minibatch

� Compute loss and backpropagate

� Take step of Optimizer

� Repeat . . .
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Trainers and Backprop

model = dy.Model()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

# Training the Model
for epoch in range(num_epochs):

for i, (Variable(doc), Variable(label)) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(doc)
loss = nn.CrossEntropyLoss(doc, label)
loss.backward()
optimizer.step()
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Options for Optimizers

Adadelta
Adagrad
Adam
LBFGS
SGD

Closure (LBFGS), learning rate, etc.
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Multilayer Perceptron for XOR

� Model
ŷ =σ(v̂ · tanh(U ~x + b )) (5)

� Loss

`=

¨

− log ŷ if y = 0

− log(1− ŷ ) if y = 1
(6)
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Imports and Data

import dynet as dy
import random

data =[ ([0,1],0),
([1,0],0),
([0,0],1),
([1,1],1) ]
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Create Model

model = dy.Model()
pU = model.add_parameters((4,2))
pb = model.add_parameters(4)
pv = model.add_parameters(4)

trainer = dy.SimpleSGDTrainer(model)
closs = 0.0
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for x,y in data:
# create graph for computing loss
dy.renew_cg()
U = dy.parameter(pU)
b = dy.parameter(pb)
v = dy.parameter(pv)
x = dy.inputVector(x)
# predict
yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
# loss
if y == 0:

loss = -dy.log(1 - yhat)
elif y == 1:

loss = -dy.log(yhat)

closs += loss.scalar_value() # forward
loss.backward()
trainer.update()

Important: loss expression defines objective you’re optimizing

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 17 / 26



for x,y in data:
# create graph for computing loss
dy.renew_cg()
U = dy.parameter(pU)
b = dy.parameter(pb)
v = dy.parameter(pv)
x = dy.inputVector(x)
# predict
yhat = dy.logistic(dy.dot_product(v,dy.tanh(U*x+b)))
# loss
if y == 0:

loss = -dy.log(1 - yhat)
elif y == 1:

loss = -dy.log(yhat)

closs += loss.scalar_value() # forward
loss.backward()
trainer.update()

Important: loss expression defines objective you’re optimizing

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 17 / 26



Key Points

� Create computation graph for each example.

� Graph is built by composing expressions.

� Functions that take expressions and return expressions define graph
components.
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Word Embeddings and Lookup Parameters

� In NLP, it is very common to use feature embeddings

� Each feature is represented as a d -dim vector

� These are then summed or concatenated to form an input vector

� The embeddings can be pre-trained

� But they are usually trained (fine-tunded) with the model
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"feature embeddings"

Figure 1: Sparse vs. dense feature representations. Two encodings of the informa-
tion: current word is “dog”; previous word is “the”; previous pos-tag is “DET”.
(a) Sparse feature vector. Each dimension represents a feature. Feature combi-
nations receive their own dimensions. Feature values are binary. Dimensionality
is very high. (b) Dense, embeddings-based feature vector. Each core feature is
represented as a vector. Each feature corresponds to several input vector en-
tries. No explicit encoding of feature combinations. Dimensionality is low. The
feature-to-vector mappings come from an embedding table.

• Features are completely independent from one another. The feature “word is
‘dog’ ” is as dis-similar to “word is ‘thinking’ ” than it is to “word is ‘cat’ ”.

Dense Each feature is a d-dimensional vector.

• Dimensionality of vector is d.

• Similar features will have similar vectors – information is shared between similar
features.

One benefit of using dense and low-dimensional vectors is computational: the majority
of neural network toolkits do not play well with very high-dimensional, sparse vectors.
However, this is just a technical obstacle, which can be resolved with some engineering
e↵ort.

The main benefit of the dense representations is in generalization power: if we believe
some features may provide similar clues, it is worthwhile to provide a representation that
is able to capture these similarities. For example, assume we have observed the word ‘dog’
many times during training, but only observed the word ‘cat’ a handful of times, or not at
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import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

torch.manual_seed(1)
word_to_ix = {"hello": 0, "world": 1}
embeds = nn.Embedding(2, 5) # 2 words in vocab, 5 dimensional embeddings
lookup_tensor = torch.tensor([word_to_ix["hello"]], dtype=torch.long)
hello_embed = embeds(lookup_tensor)
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Abstract

Many existing deep learning models for
natural language processing tasks focus on
learning the compositionality of their in-
puts, which requires many expensive com-
putations. We present a simple deep neural
network that competes with and, in some
cases, outperforms such models on sen-
timent analysis and factoid question an-
swering tasks while taking only a fraction
of the training time. While our model is
syntactically-ignorant, we show significant
improvements over previous bag-of-words
models by deepening our network and ap-
plying a novel variant of dropout. More-
over, our model performs better than syn-
tactic models on datasets with high syn-
tactic variance. We show that our model
makes similar errors to syntactically-aware
models, indicating that for the tasks we con-
sider, nonlinearly transforming the input is
more important than tailoring a network to
incorporate word order and syntax.

1 Introduction

Vector space models for natural language process-
ing (NLP) represent words using low dimensional
vectors called embeddings. To apply vector space
models to sentences or documents, one must first
select an appropriate composition function, which
is a mathematical process for combining multiple
words into a single vector.

Composition functions fall into two classes: un-
ordered and syntactic. Unordered functions treat in-
put texts as bags of word embeddings, while syntac-
tic functions take word order and sentence structure
into account. Previously published experimental

results have shown that syntactic functions outper-
form unordered functions on many tasks (Socher
et al., 2013b; Kalchbrenner and Blunsom, 2013).

However, there is a tradeoff: syntactic functions
require more training time than unordered compo-
sition functions and are prohibitively expensive in
the case of huge datasets or limited computing re-
sources. For example, the recursive neural network
(Section 2) computes costly matrix/tensor products
and nonlinearities at every node of a syntactic parse
tree, which limits it to smaller datasets that can be
reliably parsed.

We introduce a deep unordered model that ob-
tains near state-of-the-art accuracies on a variety of
sentence and document-level tasks with just min-
utes of training time on an average laptop computer.
This model, the deep averaging network (DAN),
works in three simple steps:

1. take the vector average of the embeddings
associated with an input sequence of tokens

2. pass that average through one or more feed-
forward layers

3. perform (linear) classification on the final
layer’s representation

The model can be improved by applying a novel
dropout-inspired regularizer: for each training in-
stance, randomly drop some of the tokens’ embed-
dings before computing the average.

We evaluate DANs on sentiment analysis and fac-
toid question answering tasks at both the sentence
and document level in Section 4. Our model’s suc-
cesses demonstrate that for these tasks, the choice
of composition function is not as important as ini-
tializing with pretrained embeddings and using a
deep network. Furthermore, DANs, unlike more
complex composition functions, can be effectively
trained on data that have high syntactic variance. A

1681

"Document Averaging Networks" 

text classification

Implementing a non-trivial example . . .



Deep Averaging Network

w1, . . . , wN

↓
z0 =CBOW(w1, . . . , wN )

z1 =g (W1z0+ b1)

z2 =g (W2z1+ b2)

ŷ =softmax(z2)

� Works about as well as more complicated models

� Strong baseline

� Key idea: Continuous Bag of Words

CBOW(w1, . . . , wN ) =
∑

i

E [wi ] (7)

� Actual non-linearity doesn’t matter, we’ll use tanh

� Let’s implement in DyNet
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Deep Averaging Network

w1, . . . , wN

↓
z0 =CBOW(w1, . . . , wN )

z1 =g (z1)

z2 =g (z2)

ŷ =softmax(z3)

Encode the document
def encode_doc(doc):

doc = [w2i[w] for w in doc]
embs = [E[idx] for idx in doc]
return dy.esum(embs)

First Layer
def layer1(x):

W = dy.parameter(pW1)
b = dy.parameter(pb1)
return dy.tanh(W*x+b)

Second Layer
def layer2(x):

W = dy.parameter(pW2)
b = dy.parameter(pb2)
return dy.tanh(W*x+b)
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Deep Averaging Network

w1, . . . , wN

↓
z0 =CBOW(w1, . . . , wN )

z1 =g (z1)

z2 =g (z2)

ŷ =softmax(z3)

Loss
def do_loss(probs, label):

label = label_indicator[label]
return -dy.log(dy.pick(probs,label)) # select that index

Putting it all together
def predict_labels(doc):

x = encode_doc(doc)
h = layer1(x)
y = layer2(h)
return dy.softmax(y)

Training
for (doc, label) in data:

dy.renew_cg()
probs = predict_labels(doc)

loss = do_loss(probs,label)
loss.forward()
loss.backward()
trainer.update()

Computational Linguistics: Jordan Boyd-Graber | UMD Frameworks | 25 / 26



Deep Averaging Network

w1, . . . , wN

↓
z0 =CBOW(w1, . . . , wN )

z1 =g (z1)

z2 =g (z2)
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Summary

� Computation Graph

� Expressions (≈ nodes in the graph)

� Parameters, LookupParameters

� Model (a collection of parameters)

� Trainers

� Create a graph for each example, compute loss, backdrop, update
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