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Simple Model

import torch
import torch.nn as nn

class LogisticRegression(nn.Module):
def __init__(self, input_size, num_classes):

super(LogisticRegression, self).__init__()
self.linear = nn.Linear(input_size, num_classes)

def forward(self, x):
out = self.linear(x)
return out
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Simple Model

>>> model = LogisticRegression(5, 2)
>>> model.parameters
<bound method Module.parameters of LogisticRegression(
(linear): Linear(in_features=5, out_features=2, bias=True)

)>
>>> model.linear.weight
Parameter containing:
tensor([[ 0.0650, 0.0221, 0.1673, -0.1365, -0.1233],

[-0.1289, 0.2455, 0.3255, 0.0409, -0.1908]], requires_grad=True)
>>> model.linear.bias
Parameter containing:
tensor([-0.2208, 0.2562], requires_grad=True)
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Where did these numbers come from?

class Bilinear(Module):
r"""Applies a bilinear transformation to the incoming data:
:math:‘y = x_1 A x_2 + b‘
"""

def reset_parameters(self):
stdv = 1. / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:

self.bias.data.uniform_(-stdv, stdv)

Beauty and peril of working with something like PyTorch!
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Computation Graph and Expressions

� Create basic expressions.

� Combine them using operations.

� Expressions represent symbolic computations.

� Actual computation:

.value()

.npvalue() #numpy value

.scalar_value()

.cuda() # move to GPU

.forward() # compute expression
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Running Computation Forward

>>> x = torch.Tensor(1, 5)
>>> x
tensor([[ 0.0000, -0.0000, 0.0000, -0.0000, 0.0000]])
>>> x = x*0 + 1
>>> x
tensor([[1., 1., 1., 1., 1.]])
>>> model.forward(x)
tensor([[-0.2263, 0.5485]], grad_fn=<ThAddmmBackward>)
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Modules allow computation graph

� Each module must implement forward function

� If forward function just uses built-in modules, autograd works
� If not, you’ll need to implement backward function (i.e., backprop)

� input: as many Tensors as outputs of module (gradient w.r.t. that output)
� output: as many Tensors as inputs of module (gradient w.r.t. its

corresponding input)
� If inputs do not need gradient (static) you can return None
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Trainers and Backprop

� Initialize a Optimizer with a given model’s parameter

� Get output for an example / minibatch

� Compute loss and backpropagate

� Take step of Optimizer

� Repeat . . .
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Trainers and Backprop

optimizer = torch.optim.SGD(model.parameters(),
lr=learning_rate)

# Training the Model
for epoch in range(num_epochs):

for i, (Variable(doc), Variable(label)) in \
enumerate(train_loader):

optimizer.zero_grad()
prediction = model(doc)
loss = nn.CrossEntropyLoss(prediction, label)
loss.backward()
optimizer.step()
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Options for Optimizers

Adadelta
Adagrad
Adam
LBFGS
SGD

Closure (LBFGS), learning rate, etc.
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Key Points

� Create computation graph for each example.

� Graph is built by composing expressions.

� Functions that take expressions and return expressions define graph
components.
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Word Embeddings and Lookup Parameters

� In NLP, it is very common to use feature embeddings

� Each feature is represented as a d -dim vector

� These are then summed or concatenated to form an input vector

� The embeddings can be pre-trained

� But they are usually trained (fine-tunded) with the model
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"feature embeddings"

Figure 1: Sparse vs. dense feature representations. Two encodings of the informa-
tion: current word is “dog”; previous word is “the”; previous pos-tag is “DET”.
(a) Sparse feature vector. Each dimension represents a feature. Feature combi-
nations receive their own dimensions. Feature values are binary. Dimensionality
is very high. (b) Dense, embeddings-based feature vector. Each core feature is
represented as a vector. Each feature corresponds to several input vector en-
tries. No explicit encoding of feature combinations. Dimensionality is low. The
feature-to-vector mappings come from an embedding table.

• Features are completely independent from one another. The feature “word is
‘dog’ ” is as dis-similar to “word is ‘thinking’ ” than it is to “word is ‘cat’ ”.

Dense Each feature is a d-dimensional vector.

• Dimensionality of vector is d.

• Similar features will have similar vectors – information is shared between similar
features.

One benefit of using dense and low-dimensional vectors is computational: the majority
of neural network toolkits do not play well with very high-dimensional, sparse vectors.
However, this is just a technical obstacle, which can be resolved with some engineering
e↵ort.

The main benefit of the dense representations is in generalization power: if we believe
some features may provide similar clues, it is worthwhile to provide a representation that
is able to capture these similarities. For example, assume we have observed the word ‘dog’
many times during training, but only observed the word ‘cat’ a handful of times, or not at
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import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

torch.manual_seed(1)
word_to_ix = {"hello": 0, "world": 1}
embeds = nn.Embedding(2, 5) # 2 words in vocab, 5 dim embed
lookup_tensor = torch.tensor([word_to_ix["hello"]],

dtype=torch.long)
hello_embed = embeds(lookup_tensor)
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