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Logistic Regression by Another Name: Map inputs to output
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Logistic Regression by Another Name: Map inputs to output
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Logistic Regression by Another Name: Map inputs to output
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Why is it called activation?
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In the shallow end

= This is still logistic regression
= Engineering features x is difficult (and requires expertise)

= Can we learn how to represent inputs into final decision?
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Better name: non-linearity

= Logistic / Sigmoid
)= — 1)
X)=
* = sigmoid 1 + e
4 =—=thanh
s = tanh
) f(x) =tanh(x) = 2
2 (X)—tan (X)—m-‘l (2)
1_
. = RelLU
j i 0 for x<0
5 0 5 =
f(x) { x for x>0 3)
= SoftPlus: f(x) =In(1+ &)
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Learn the features and the function
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Learn the features and the function
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Learn the features and the function
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Learn the features and the function
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Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hy ,(x).

1
J(W,b;x,y) = Ellhw,b(x)—yll2 (4)
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Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hy ,(x).

1
J(W,b;x,y) = 5||f7w,b(x)—y||2 (4)

= We want this value, summed over all of the examples to be as small as
possible

= We also want the weights not to be too large
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Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hyy p(x).

—_

J(W,b;x,y) = =|lhw,p(x) =yl (4)

2

= We want this value, summed over all of the examples to be as small as
possible

= We also want the weights not to be too large
2 n—=1 8 Si 5
!
3. 2.2 (w) ®)

=1 =

Sum over all layers
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Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hyy ,(X).

1
(W, bix,y) = Sl ()~ I @

= We want this value, summed over all of the examples to be as small as
possible

= We also want the weights not to be too large
A n—1 s S 5
/
2222 (W) ®)

I i=1 j=1

Sum over all sources
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Objective Function

= For every example x, y of our supervised training set, we want the label
y to match the prediction hyy ,(X).

1
(W, bix,y) = Sl ()~ I @

= We want this value, summed over all of the examples to be as small as
possible

= We also want the weights not to be too large

An,—1 Sy Si41

Sum over all destinations
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Objective Function

Putting it all together:

n—=1 8 Sit1

J,6) = L3 o) O [+ 2SS (W @

i=1 T i=1 =1
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Objective Function

Putting it all together:
n—1 8 Si1

J(W, b) = 1Ei%Ilfruxv,ta()((’))—}’(")II2 +%ZZ W) ®

i=1 i=1 j=1

= Our goal is to minimize J(W, b) as a function of W and b
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Objective Function

Putting it all together:

n—1 8 Si1

J(W,b) = %i%nhw,b(x(’))—y(’)llz IS (W) e

i=1 i=1 j=1

= Our goal is to minimize J(W, b) as a function of W and b

= |nitialize W and b to small random value near zero
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Objective Function

Putting it all together:

n—1 8 Si1

J(W,b) = %i%nhw,b(x(’))—y(’)llz IS (W) e

i=1 i=1 j=1

= Our goal is to minimize J(W, b) as a function of W and b
= |nitialize W and b to small random value near zero

= Adjust parameters to optimize J
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Gradient Descent

Goal

Optimize J with respect to variables W and b

Objective t

»

undiscovered Parameter
country
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Backpropigation

= For convenience, write the input to sigmoid

N0 Z Wy(/—1))(/_ o) @

=
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Backpropigation

= For convenience, write the input to sigmoid

n

N0 Z W’](/—nx/_ L) @
j=1

= The gradient is a function of a node’s error 6,.(/)
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Backpropigation

= For convenience, write the input to sigmoid
n
/ 1 -1
203w @
=1
= The gradient is a function of a node’s error 6,.(/)
= For output nodes, the error is obvious:

0 a(n/) “y_hw,b(x)”2 :—(yi_af”l)) . f/(zi(n/))
Zj

1

5" =
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Backpropigation

= For convenience, write the input to sigmoid

n

! 11 -1

203w @
=1

= The gradient is a function of a node’s error 6,.(/)

= For output nodes, the error is obvious:

7 1
3" = =i ==(i=d") 1 (57); @
1
= Other nodes must “backpropagate” downstream error based on
connection strength
St41
51(/) _ (Z %(_/+1)5l(/+1)) f/(zi(/)) ©)
j=1
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Backpropigation

= For convenience, write the input to sigmoid
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= The gradient is a function of a node’s error 6,.(/)

= For output nodes, the error is obvious:
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= Other nodes must “backpropagate” downstream error based on
connection strength
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Backpropigation

= For convenience, write the input to sigmoid

n

! 11 -1

20 =3 W )
=1

= The gradient is a function of a node’s error 6,.(/)

= For output nodes, the error is obvious:

(m__9 . _ 2__(,_ Y. ¢(, )]
67" = I~ Pua I = y=a")r(a");  ®
1
= Other nodes must “backpropagate” downstream error based on
connection strength
0 _ [N 1) =50 ) )
0, :(iji 0; )f/(z/ ) 9
j=1
chain rule
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Partial Derivatives

= For weights, the partial derivatives are

e — (W, bix,y) =5 (10)

= For the bias terms, the partial derivatives are

— 5 I(W.bix,y) = st (11)
db;

= But this is just for a single example ...
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Full Gradient Descent Algorithm

1. Initialize U and V() as zero
2. Foreachexamplei=1...m

2.1 Use backpropagation to compute V,J and V,,J
2.2 Update weight shifts U() = U) + v, J(W, b; x, y)
2.3 Update bias shifts V() = V() + v, J(W,b; x,y)

3. Update the parameters

w zw(’)_a[(lu(’))] (12)
m
b —p) _g lv(f)] (13)
m

4. Repeat until weights stop changing
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But it is not perfect

Compare against baselines: randomized features, nearest-neighbors,
linear models

Optimization is hard (alchemy)

Models are often not interpretable

Requires specialized hardware and tons of data to scale
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