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Logistic Regression by Another Name: Map inputs to output
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Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . xd

Output
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Logistic Regression by Another Name: Map inputs to output

Input

Vector x1 . . . xd

Output

f

�

∑

i

Wixi +b

�

Activation

f (z)≡
1

1+exp(−z)

pass through
nonlinear sigmoid
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Why is it called activation?
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In the shallow end

� This is still logistic regression

� Engineering features x is difficult (and requires expertise)

� Can we learn how to represent inputs into final decision?

Computational Linguistics: Jordan Boyd-Graber | UMD Multilayer Networks | 4 / 13



Better name: non-linearity

� Logistic / Sigmoid

f (x) =
1

1+e−x
(1)

� tanh

f (x) = tanh(x) =
2

1+e−2x
−1 (2)

� ReLU

f (x) =

�

0 for x < 0
x for x ≥ 0

(3)

� SoftPlus: f (x) = ln(1+ex)
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Learn the features and the function

a
(2)
1 = f

�

W
(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 +b

(1)
1

�
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Learn the features and the function

hW ,b(x) = a
(3)
1 = f

�

W
(2)
11 a

(2)
1 +W

(2)
12 a

(2)
2 +W

(2)
13 a

(2)
3 +b

(2)
1

�
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Objective Function

� For every example x ,y of our supervised training set, we want the label
y to match the prediction hW ,b(x).

J(W ,b;x ,y)≡
1

2
||hW ,b(x)− y ||2 (4)

� We want this value, summed over all of the examples to be as small as
possible

� We also want the weights not to be too large

λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(5)
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Objective Function

Putting it all together:

J(W ,b) =

�

1

m

m
∑

i=1

1

2
||hW ,b(x

(i))− y(i)||2
�

+
λ

2

nl−1
∑

l

sl
∑

i=1

sl+1
∑

j=1

�

W l
ji

�2
(6)

� Our goal is to minimize J(W ,b) as a function of W and b

� Initialize W and b to small random value near zero

� Adjust parameters to optimize J
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Deep Learning from Data

Gradient Descent

Goal

Optimize J with respect to variables W and b

Parameter

Objective
start

stop

undiscovered
country
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Deep Learning from Data

Backpropigation

� For convenience, write the input to sigmoid

z
(l)
i =

n
∑

j=1

W
(l−1)
ij xj +b

(l−1)
i (7)

� The gradient is a function of a node’s error δ
(l)
i

� For output nodes, the error is obvious:

δ
(nl)
i =

∂

∂ z
(nl)
i

||y −hw ,b(x)||2 =−
�

yi −a
(nl)
i

�

· f ′
�

z
(nl)
i

� 1

2
(8)

� Other nodes must “backpropagate” downstream error based on
connection strength

δ
(l)
i =

�st+1
∑

j=1

W
(l+1)
ji δ

(l+1)
j

�

f ′(z
(l)
i ) (9)
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Deep Learning from Data

Partial Derivatives

� For weights, the partial derivatives are

∂

∂W
(l)
ij

J(W ,b;x ,y) = a
(l)
j δ

(l+1)
i (10)

� For the bias terms, the partial derivatives are

∂

∂ b
(l)
i

J(W ,b;x ,y) =δ
(l+1)
i (11)

� But this is just for a single example . . .
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Deep Learning from Data

Full Gradient Descent Algorithm

1. Initialize U(l) and V (l) as zero

2. For each example i = 1 . . .m
2.1 Use backpropagation to compute ∇W J and ∇bJ
2.2 Update weight shifts U(l) =U(l)+∇W (l)J(W ,b;x ,y)
2.3 Update bias shifts V (l) = V (l)+∇b(l)J(W ,b;x ,y)

3. Update the parameters

W (l) =W (l)−α
��

1

m
U(l)

��

(12)

b(l) =b(l)−α
�

1

m
V (l)

�

(13)

4. Repeat until weights stop changing
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Deep Learning from Data

But it is not perfect

� Compare against baselines: randomized features, nearest-neighbors,
linear models

� Optimization is hard (alchemy)

� Models are often not interpretable

� Requires specialized hardware and tons of data to scale
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