

Support Vector Machines

Computational Linguistics: Jordan Boyd-Graber University of Maryland SEPTEMBER 5, 2018

Slides adapted from Tom Mitchell, Eric Xing, and Lauren Hannah

Roadmap

- Classification: machines labeling data for us
- **Previously: naïve Bayes and logistic regression**
- **This time: SVMs**
	- (another) example of linear classifier
	- Good classification accuracy
	- Good theoretical properties

Thinking Geometrically

- **Suppose you have two classes: vacations and sports**
- **Suppose you have four documents**

Nhat does this look like in vector space?

Put the documents in vector space

Travel

Ball

Vector space representation of documents

- Each document is a vector, one component for each term.
- **Terms are axes.**
- High dimensionality: 10,000s of dimensions and more
- How can we do classification in this space?

Vector space classification

- As before, the training set is a set of documents, each labeled with its class.
- In vector space classification, this set corresponds to a labeled set of points or vectors in the vector space.
- Premise 1: Documents in the same class form a **contiguous region**.
- Premise 2: Documents from different classes **don't overlap**.
- We define lines, surfaces, hypersurfaces to divide regions.

Should the document ! be assigned to China, UK or Kenya? Should the document *?* be assigned to China, UK or Kenya?

Find separators between the classes Find separators between the classes

Find separators between the classes Find separators between the classes

Based on these separators: \star should be assigned to China

How do we find separators that do a good job at classifying new documents like \star ? – Main topic of today

Linear classifiers

- Definition:
	- \Box A linear classifier computes a linear combination or weighted sum $\sum_i \beta_i x_i$ of the feature values.
	- Classification decision: P *ⁱ βixⁱ > β*0? (*β*⁰ is our bias)
	- \Box \ldots where β_0 (the threshold) is a parameter.
- We call this the **separator** or **decision boundary**.
- We find the separator based on training set.
- Methods for finding separator: logistic regression, naïve Bayes, linear SVM
- Assumption: The classes are **linearly separable**.

Linear classifiers

- Definition:
	- \Box A linear classifier computes a linear combination or weighted sum $\sum_i \beta_i x_i$ of the feature values.
	- Classification decision: P *ⁱ βixⁱ > β*0? (*β*⁰ is our bias)
	- \Box \ldots where β_0 (the threshold) is a parameter.
- We call this the **separator** or **decision boundary**.
- We find the separator based on training set.
- Methods for finding separator: logistic regression, naïve Bayes, linear SVM
- Assumption: The classes are **linearly separable**.
- Before, we just talked about equations. What's the geometric intuition?

 A linear classifier in 1D is a point *x* described by the equation $\beta_1 x_1 = \beta_0$

 A linear classifier in 1D is a point *x* described by the equation $\beta_1 x_1 = \beta_0$

 \blacksquare *x* = β_0/β_1

- A linear classifier in 1D is a point *x* described by the equation $\beta_1 x_1 = \beta_0$
	- \blacksquare *x* = β_0/β_1
	- Points (x_1) with $\beta_1 x_1 \geq \beta_0$ are in the class *c*.

- A linear classifier in 1D is a point *x* described by the equation $\beta_1 x_1 =$ equation $\beta_1x_1 = \beta_0$
- $x = \beta_0/\beta_1$
	- Points (x_1) with $\beta_1 x_1 \geq \beta_0$ are in the class *c*.
- $\overline{}$ in the complement class $\overline{}$. Points (x_1) with $\beta_1 x_1 < \beta_0$ are

A linear classifier in 2D is \blacksquare A linear classifier in 2D is a line described by the equation $β_1x_1 + β_2x_2 = β_0$

- A linear classifier in 2D is \blacksquare A linear classifier in 2D is a line described by the equation $β_1x_1 + β_2x_2 = β_0$
- **Example for a 2D linear** classifier

- A linear classifier in 2D is A linear classifier in 2D is a line described by the equation $e^{i\theta}$ $β_1x_1 + β_2x_2 = β_0$
- Example for a 2D linear classifier
- Points (x_1, x_2) with $\beta_1 x_1 + \beta_2 x_2 \geq \beta_0$ are in the class *c*.

- A linear classifier in 2D is \blacksquare A linear classifier in 2D is a line described by the equation $β_1x_1 + β_2x_2 = β_0$
- classifier \blacksquare Example for a 2D linear classifier
- **Points** (x_1, x_2) with ρ with ρ $\beta_1x_1+\beta_2x_2$ \geq β_0 are in the class *c*.
- Sch¨utze: Support vector machines 16 / 55 • Points (x_1, x_2) with $\beta_1 x_1 + \beta_2 x_2 < \beta_0$ are in the complement class *c*.

 \overline{A} linear classifier in \overline{A} \blacksquare A linear classifier in 3D is a equation plane described by the

*β*₁*x*₁ + *β*₂*x*₂ + *β*₃*x*₃ = *β*₀

 \blacksquare A linear classifier in 3D is a μ 1 - waaronde steep μ equation plane described by the

 $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = \beta_0$

Example for a 3D linear classifier

A linear classifier in 3D Allen Vector Support Vector Machines Discussion Machin

A linear classifier in 3D is A linear classifier in 3D is a a plane described by the plane described by the equation

 $\beta_1x_1+\beta_2x_2+\beta_3x_3=\beta_0$

- classifier Points (d¹ d² d3) with classifier **Example for a 3D linear**
- **Points** $(x_1 x_2 x_3)$ with $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 \ge \beta_0$ are in the class *c*.

 \blacksquare A linear classifier in 3D is a plane described by the equation

 $\beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 = \beta_0$

- Points (d¹ d² d3) with ■ Example for a 3D linear classifier
- P_1 d P_2 d 2 \blacksquare Points $(x_1 \ x_2 \ x_3)$ with $\beta_1\overline{x}_1 + \beta_2\overline{x}_2 + \beta_3\overline{x}_3 \geq \beta_0$ are in the class *c*.
- **Points** $(x_1 x_2 x_3)$ with *β*₁*x*₁ + *β*₂*x*₂ + *β*₃*x*₃ < *β*₀ are in the complement class *c*.

Naive Bayes and Logistic Regression as linear classifiers

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

$$
\sum_{i=1}^M \beta_i x_i = \beta_0
$$

 ω *p*_i $=$ log[$\hat{P}(t_i|c)/\hat{P}(t_i|\bar{c})]$, x_i $=$ number of occurrences of t_i in d , and $B_0 = -\log[\hat{P}(c)/\hat{P}(\bar{c})]$. Here, the index *i*, $1 \le i \le M$, refers to terms of the vocabulary.

Logistic regression is the same (we only put it into the logistic function to turn it into a probability).

Naive Bayes and Logistic Regression as linear classifiers

Multinomial Naive Bayes is a linear classifier (in log space) defined by:

$$
\sum_{i=1}^M \beta_i x_i = \beta_0
$$

 ω *p*_i $=$ log[$\hat{P}(t_i|c)/\hat{P}(t_i|\bar{c})]$, x_i $=$ number of occurrences of t_i in d , and $B_0 = -\log[\hat{P}(c)/\hat{P}(\bar{c})]$. Here, the index *i*, $1 \le i \le M$, refers to terms of the vocabulary.

Logistic regression is the same (we only put it into the logistic function to turn it into a probability).

Takeway

Naïve Bayes, logistic regression and SVM are all linear methods. They choose their hyperplanes based on different objectives: joint likelihood (NB), conditional likelihood (LR), and the margin (SVM).

Which hyperplane?

Which hyperplane?

- For linearly separable training sets: there are **infinitely** many separating hyperplanes.
- \blacksquare They all separate the training set perfectly ...
- \blacksquare ... but they behave differently on test data.
- **Error rates on new data are low for some, high for others.**
- How do we find a low-error separator?

Support vector machines

- Machine-learning research in the last two decades has improved classifier effectiveness.
- New generation of state-of-the-art classifiers: support vector machines (SVMs), boosted decision trees, regularized logistic regression, neural networks, and random forests
- **EXECUTE:** Applications to IR problems, particularly text classification

SVMs: A kind of large-margin classifier

Vector space based machine-learning method aiming to find a decision boundary between two classes that is maximally far from any point in the training data (possibly discounting some points as outliers or noise)

Support Vector Machines

■ 2-class training data

Support Vector M<mark>achines</mark>

- 2-class training data
- decision boundary \rightarrow **linear separator**

Support Vector Machines 2-class training data

- 2-class training data
- decision boundary \rightarrow **linear separator**
- \blacksquare criterion: being maximally far away from any data point \rightarrow determines classifier **margin**

Support Vector Machines

- 2-class training data classification decisions s training data
- **decision boundary** \rightarrow **linear separator** separator
- **criterion: being** maximally far away from any data point \rightarrow determines classifier **margin** if α data point \rightarrow
- linear separator position defined by ${\sf support\ vectors}$

Why maximize the margin? Why maximize the margin?

- Points near decision surface \rightarrow uncertain classification decisions classification decisions riear decision
- A classifier with a large margin is always confident certainty classification sifier wit \mathbf{r} errors in measurement or
- \blacksquare Gives classification safety margin (measurement or variation)

Why maximize the margin?

- SVM classifier: large margin around decision boundary
- compare to decision hyperplane: place fat separator between classes
	- unique solution
- **decreased memory capacity**
- **n** increased ability to correctly generalize to test data

Equation

Equation of a hyperplane

$$
\vec{w} \cdot x_i + b = 0 \tag{1}
$$

Distance of a point to hyperplane

$$
\frac{|\vec{w} \cdot x_i + b|}{||\vec{w}||} \tag{2}
$$

The margin ρ is given by

$$
\rho \equiv \min_{(x,y)\in S} \frac{|\vec{w} \cdot x_j + b|}{||\vec{w}||} = \frac{1}{||\vec{w}||}
$$
(3)

Equation

Equation of a hyperplane

$$
\vec{w} \cdot x_i + b = 0 \tag{1}
$$

Distance of a point to hyperplane

$$
\frac{|\vec{w} \cdot x_i + b|}{||\vec{w}||} \tag{2}
$$

The margin ρ is given by

$$
\rho \equiv \min_{(x,y)\in S} \frac{|\vec{w} \cdot x_j + b|}{||\vec{w}||} = \frac{1}{||\vec{w}||}
$$
(3)

This is because for any point on the marginal hyperplane, $\vec{w} \cdot x + b = \pm 1$

Optimization Problem

We want to find a weight vector *w~* and bias *b* that optimize

$$
\min_{\vec{w},b} \frac{1}{2} ||w||^2 \tag{4}
$$

subject to $y_i(\vec{w} \cdot x_i + b) \geq 1$, $\forall i \in [1, m]$.

- None?
- Very little?
- A fair amount?
- A huge amount

- None? **Hand write rules or use active learning**
- Very little?
- A fair amount?
- A huge amount

- None? **Hand write rules or use active learning**
- Very little? **Naïve Bayes**
- A fair amount?
- A huge amount

- None? **Hand write rules or use active learning**
- Very little? **Naïve Bayes**
- A fair amount? **SVM**
- A huge amount

- None? **Hand write rules or use active learning**
- Very little? **Naïve Bayes**
- A fair amount? **SVM**
- A huge amount **Doesn't matter, use whatever works**

SVM extensions: What's next

- **Finding solutions**
- **Slack variables: not perfect line**
- **Kernels: different geometries**

