

Slides adapted from Mohri

Classification

Computational Linguistics: Jordan Boyd-Graber University of Maryland PERCEPTRON

Motivation

- On-line learning:
 - update parameters with each example
 - no distributional assumption.
 - worst-case analysis (adversarial).
 - mixed training and test.
 - Performance measure: mistake model, regret.

General Online Setting

- For t = 1 to T:
 - □ Get instance $x_t \in X$
 - □ Predict $\hat{y}_t \in Y$
 - □ Get true label $y_t \in Y$
 - Incur loss $L(\hat{y}_t, y_t)$
- Classification: $Y = \{0, 1\}, L(y, y') = |y' y|$
- Regression: $Y \subset \mathbb{R}, L(y, y') = (y' y)^2$

General Online Setting

- For t = 1 to T:
 - □ Get instance $x_t \in X$
 - □ Predict $\hat{y}_t \in Y$
 - □ Get true label $y_t \in Y$
 - Incur loss $L(\hat{y}_t, y_t)$
- Classification: $Y = \{0, 1\}, L(y, y') = |y' y|$
- Regression: $Y \subset \mathbb{R}$, $L(y, y') = (y' y)^2$
- **Objective**: Minimize total loss $\sum_{t} L(\hat{y}_t, y_t)$

Perceptron Algorithm

- Online algorithm for classification
- Very similar to logistic regression (but 0/1 loss)
- But what can we prove?

Perceptron Algorithm

$$\vec{w}_{1} \leftarrow \vec{0};$$
for $\underline{t} \leftarrow 1 \dots T$ do
Receive $x_{t};$
 $\hat{y}_{t} \leftarrow \operatorname{sgn}(\vec{w}_{t} \cdot \vec{x}_{t});$
Receive $y_{t};$
if $\underline{\hat{y}_{t}} \neq y_{t}$ then
 $| \vec{w}_{t+1} \leftarrow \vec{w}_{t} + y_{t} \vec{x}_{t};$
else
 $| \vec{w}_{t+1} \leftarrow w_{t};$
return $\underline{w_{T+1}}$
Algorithm 1: Perceptron Algorithm (Rosenblatt, 1958)

Objective Function

Optimizes

$$\frac{1}{T}\sum_{t}\max(0,-y_t(\vec{w}\cdot x_t)) \tag{1}$$

Convex but not differentiable

Margin and Errors

 If there's a good margin ρ, you'll converge quickly

Margin and Errors

- If there's a good margin ρ, you'll converge quickly
- Whenever you se an error, you move the classifier to get it right
- Convergence only possible if data are separable

How many errors does Perceptron make?

• If your data are in a *R* ball and there is a margin

$$p \le \frac{y_t(\vec{v} \cdot \vec{x}_t)}{\|v\|}$$

for some $ec{v}$, then the number of mistakes is bounded by $R^2/
ho^2$

- The places where you make an error are support vectors
- Convergence can be slow for small margins

(2)

Why study Perceptron?

- Simple algorithm
- Bound independent of dimension and tight
- Foundation of deep learning
- Proof techniques helped usher in SVMs
- Generalizes to structured prediction