

Naïve Bayes Discussion

Computational Linguistics: Jordan Boyd-Graber University of Maryland

Roadmap

- Content Questions
- Administrivia Questions
- NB Exercise

Content Questions

Administrivia Announcements

- Use Piazza
- submit server
- TA office hours

Administrivia Questions

Documents

D1: Spam

abuja man

D3: Spam

cialis deal

D5: Spam

abuja deal

D7: Spam

cialis dog

D2: Ham man dog D4: Ham logistic mother logistic abuja D6: Ham bagel deal

Documents

D1: Spam

abuja man

D3: Spam

cialis deal

D5: Spam

abuja deal

D7: Spam

cialis dog

What's |C| and |V|?

D2: Ham	
man dog	
D4: Ham	
D4. Halli	
logistic mother logistic abuja	
D6: Ham	

bagel deal

Documents

D1: Spam

abuja man

D3: Spam

cialis deal

D5: Spam

abuja deal

D7: Spam

cialis dog

|C| = 2 (spam vs. ham)

D2: Ham
man dog
D4: Ham
logistic mother logistic abuja
D6: Ham

bagel deal

Documents	
D1: Spam	
abuja man	D2: Ham
D3: Spam	man dog
cialis deal	D4: Ham
D5: Spam	logistic mother logistic abuja
abuja deal	D6: Ham
D7: Spam	bagel deal
cialis dog	
<pre> V =8:'deal', 'dog', 'b 'mother', 'cialis', 'a</pre>	

D1:	Spam	

abuja man

D3: Spam

cialis deal

D5: Spam

abuja deal

D7: Spam

cialis dog

D2: Ham man dog D4: Ham logistic mother logistic abuja D6: Ham

bagel deal

D	1:	S	pa	m

abuja man

D3: Spam

cialis deal

D5: Spam

abuja deal

D7: Spam

cialis dog

What's $\hat{P}(c_j)$?

D2: Ham man dog D4: Ham logistic mother logistic abuja D6: Ham bagel deal

• For spam:

(1)

• For spam:

$$\hat{P}(c_j = \operatorname{spam}) = \frac{N_c + 1}{N + |C|} \tag{1}$$

(2)

• For spam:

$$\hat{P}(c_{j} = \text{spam}) = \frac{N_{c} + 1}{N + |C|}$$
(1)
$$= \frac{4 + 1}{7 + 2}$$
(2)
$$= \frac{5}{9}$$
(3)

• For spam:

$$\hat{P}(c_{j} = \text{spam}) = \frac{N_{c} + 1}{N + |C|}$$
(1)
$$= \frac{4 + 1}{7 + 2}$$
(2)
$$= \frac{5}{9}$$
(3)

• For ham:

(4)

• For spam:

$$\hat{P}(c_{j} = \text{spam}) = \frac{N_{c} + 1}{N + |C|}$$
(1)
$$= \frac{4 + 1}{7 + 2}$$
(2)
$$= \frac{5}{9}$$
(3)

• For ham:

$$\hat{P}(c_j = \text{ham}) = \frac{N_c + 1}{N + |C|}$$
(4)

(5)

• For spam:

$$\hat{P}(c_{j} = \text{spam}) = \frac{N_{c} + 1}{N + |C|}$$
(1)
$$= \frac{4 + 1}{7 + 2}$$
(2)
$$= \frac{5}{9}$$
(3)

• For ham:

$$\hat{P}(c_{j} = \text{ham}) = \frac{N_{c} + 1}{N + |C|}$$

$$= \frac{3 + 1}{7 + 2}$$

$$= \frac{4}{9}$$
(4)
(5)
(5)

D1: Spam	
abuja man	D2: Ham
D3: Spam	man dog
cialis deal	D4: Ham
D5: Spam	logistic mother logistic abuja
abuja deal	D6: Ham
D7: Spam	bagel deal
cialis dog	

What's the conditional probability $\hat{P}(w = \text{dog} | c)$?

• For spam:

(7)

• For spam:

$$\hat{P}(w = \text{dog} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(7)
(8)

• For spam:

$$\hat{P}(w = \text{dog} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(7)
$$= \frac{1+1}{8+8}$$
(8)

(9)

• For spam:

$$\hat{P}(w = \text{dog} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(7)
$$= \frac{1+1}{8+8}$$
(8)
$$= \frac{1}{8}$$
(9)

• For spam:

$$\hat{P}(w = \text{dog} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(7)
$$= \frac{1+1}{8+8}$$
(8)
$$= \frac{1}{8}$$
(9)

• For ham:

(10)

• For spam:

$$\hat{P}(w = \text{dog} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(7)
$$= \frac{1+1}{8+8}$$
(8)
$$= \frac{1}{8}$$
(9)

• For ham:

$$\hat{P}(w = \text{dog} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(10)
(11)

• For spam:

$$\hat{P}(w = \text{dog} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(7)
$$= \frac{1+1}{8+8}$$
(8)

$$=\frac{1}{8}$$
 (9)

• For ham:

$$\hat{P}(w = \log | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(10)
= $\frac{1+1}{8+8}$ (11)

(12)

• For spam:

$$\hat{P}(w = \text{dog} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(7)
$$= \frac{1+1}{8+8}$$
(8)

$$=\frac{1}{8}$$
 (9)

• For ham:

$$\hat{P}(w = \text{dog} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(10)
$$= \frac{1+1}{8+8}$$
(11)
$$= \frac{1}{8}$$
(12)

What if you saw a document with the word "dog"?

What if you saw a document with the word "dog"?

• For spam:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(13)

(14)

What if you saw a document with the word "dog"?

• For spam:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(13)
= $\frac{5}{9} \cdot \frac{1}{8}$ (14)

(15)

What if you saw a document with the word "dog"?

• For spam:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(13)
$$= \frac{5}{9} \cdot \frac{1}{8}$$
(14)
$$= 0.07$$
(15)

What if you saw a document with the word "dog"?

• For spam:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(13)
=0.07 (14)

• For ham:

(15)

What if you saw a document with the word "dog"?

• For spam:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(13)
=0.07 (14)

• For ham:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(15)

(16)

What if you saw a document with the word "dog"?

• For spam:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(13)

=0.07 (14)

• For ham:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(15)
= $\frac{4}{9} \cdot \frac{1}{8}$ (16)

(17)

What if you saw a document with the word "dog"?

• For spam:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(13)

=0.07 (14)

• For ham:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(15)
$$= \frac{4}{9} \cdot \frac{1}{8}$$
(16)
$$= 0.06$$
(17)

What if you saw a document with the word "dog"?

• For spam:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(13)
=0.07 (14)

• For ham:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(15)
=0.06 (16)

These aren't probabilities? What if we wanted the real probabilities?

• For spam:

(17)

$$\hat{P}(w = \text{logistic} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(17)
(18)

$$\hat{P}(w = \text{logistic} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(17)
$$= \frac{0+1}{8+8}$$
(18)
$$= \frac{1}{16}$$
(19)

• For spam:

$$\hat{P}(w = \text{logistic} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(17)
$$= \frac{0+1}{8+8}$$
(18)
$$= \frac{1}{16}$$
(19)

• For ham:

(20)

$$\hat{P}(w = \text{logistic} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(17)
$$= \frac{0+1}{8+8}$$
(18)
$$= \frac{1}{16}$$
(19)

$$\hat{P}(w = \text{logistic} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(20)
(21)

• For spam:

$$\hat{P}(w = \text{logistic} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(17)
$$= \frac{0 + 1}{8 + 8}$$
(18)
$$1$$
(18)

$$=\frac{1}{16}$$
 (19)

• For ham:

$$\hat{P}(w = \text{logistic} | c) = \frac{T_{cw} + 1}{(\sum_{w' \in V} T_{cw'}) + |V|}$$
(20)
$$= \frac{2 + 1}{8 + 8}$$
(21)
$$= \frac{3}{16}$$
(22)

What if you saw a document with the words "logistic" "logistic" "dog"?

What if you saw a document with the words "logistic" "logistic" "dog"?

• For spam:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(23)

(24)

What if you saw a document with the words "logistic" "logistic" "dog"?

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(23)
= $\frac{5}{9} \cdot \frac{1}{8} \cdot \frac{1}{16} \cdot \frac{1}{16}$ (24)
(25)

What if you saw a document with the words "logistic" "logistic" "dog"?

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(23)
= $\frac{5}{9} \cdot \frac{1}{8} \cdot \frac{1}{16} \cdot \frac{1}{16}$ (24)
= 0.0002 (25)

What if you saw a document with the words "logistic" "logistic" "dog"?

• For spam:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(23)
=0.0002 (24)

• For ham:

(25)

What if you saw a document with the words "logistic" "logistic" "dog"?

• For spam:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(23)
=0.0002 (24)

• For ham:

$$P(c|d) \propto P(c) \prod_{1 \leq i \leq n_d} P(w_i|c)$$
(25)

Computational Linguistics: Jordan Boyd-Graber | UMD

(26)

What if you saw a document with the words "logistic" "logistic" "dog"?

• For spam:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(23)

• For ham:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(25)
= $\frac{4}{9} \cdot \frac{1}{8} \cdot \frac{3}{16} \cdot \frac{3}{16}$ (26)
(27)

What if you saw a document with the words "logistic" "logistic" "dog"?

• For spam:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(23)

• For ham:

$$P(c|d) \propto P(c) \prod_{1 \le i \le n_d} P(w_i|c)$$
(25)
= $\frac{4}{9} \cdot \frac{1}{8} \cdot \frac{3}{16} \cdot \frac{3}{16}$ (26)
= 0.002 (27)